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Помеченные и непомеченные объекты
• Во многих комбинаторных задачах ответ и трудность его нахождения
существенно зависят от того, рассматриваются ли помеченные или
непомеченные объекты.
• Например, сколько существует различных графов на n вершинах? Ответ на
этот вопрос зависит от того, какие графы мы будем считать различными.
1. Пусть n вершин занумерованы числами от 1 до n. Тогда у нас есть C 2

n
пар вершин, каждую из которых можно соединить или не соединить
ребром. Итого, получаем 2C

2
n = 2

n(n−1)
2 различных графов.

– Графы, все вершины которых занумерованы натуральными числами
от 1 до v(G ) называют помеченными, а полученное выше количество
графов — это число помеченных графов на n вершинах.

2. Совсем другой результат получается, если никаких пометок
на вершинах нет и все вершины считаются идентичными.

– Напомним, что изоморфизмом графов G1 и G2 называется
биекция ϕ : V (G1)→ V (G2), удовлетворяющая условию
∀x , y ∈ V (G1) (xy ∈ E (G1)←→ ϕ(x)ϕ(y) ∈ E (G2)).

– Сами графы G1 и G2 в этом случае называют изоморфными.
Обозначение: G1 ∼= G2.
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Графы с точностью до изоморфизма

• По сути, если мы стираем пометки на вершинах графа, то мы перестаем
различать изоморфные друг другу графы. Тогда возникает вопрос о
количестве графов с точностью до изоморфизма.

I Легко видеть, что изоморфность двух помеченных графов — это
отношение эквивалентности. А интересующее нас количество графов
с точностью до изоморфизма — это число классов эквивалентности.

Пример
Есть 26 = 64 помеченных графов на 4 вершинах, но всего 11 попарно
неизоморфных графов на 4 вершинах.
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Расстановка пометок и автоморфизмы графа
• Посмотрим на этот вопрос с другой стороны. Сколько есть способов
расставить пометки на вершинах данного непомеченного графа?
• Другими словами, сколько помеченных графов входят в данный класс
эквивалентности?

I Количество классов эквивалентности было бы легко посчитать, если бы все
классы содержали одинаковое число элементов. Однако, это, увы, не так.

I Например, очевидно, что полный граф является единственным элементом
своего класса эквивалентности. Но есть n(n − 1)/2 помеченных графов
на n вершинах ровно с одним ребром — и все они изоморфны.

• Всего есть n! способов расставить пометки на данных n вершинах. Но
некоторые из этих способов могут давать один и тот же помеченный граф.

I То есть граф может оказаться изоморфен сам себе.

Определение
• Автоморфизмом графа G называется изоморфизм из G в G .
• Множество всех автоморфизмов графа G обозначается Aut(G ).



Дискретная
математика.

Глава 9.
Перечисление
непомеченных

объектов.

А. В. Пастор

Группа автоморфизмов графа

Замечание
• Итак, автоморфизм графа — это перестановка на множестве его вершин,
сохраняющая отношение смежности.
• Пусть вершины графа G занумерованы числами от 1 до n.
Тогда Aut(G ) ⊂ Sn.

Утверждение
Aut(G ) < Sn.
Доказательство. Очевидно, что e ∈ Aut(G ). Далее нужно проверить
замкнутость относительно умножения и взятия обратного элемента.
• Пусть ϕ,ψ ∈ Aut(G ). Поскольку ϕ и ψ — биекции, их композиция —
также биекция. Далее, для любых x , y ∈ V (G ) имеем
xy ∈ E (G )⇐⇒ ψ(x)ψ(y) ∈ E (G )⇐⇒ ϕ(ψ(x))ϕ(ψ(y)).
• Пусть ϕ ∈ Aut(G ). Поскольку ϕ — биекция, сохраняющая отношение
смежности, то ϕ−1 — также биекция, сохраняющая отношение
смежности.
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Группа автоморфизмов и её свойства

Определение
Определенная выше группа Aut(G ) называется группой автоморфизмов
графа G .

Утверждение

1. Если G1 ∼= G2, то Aut(G1) ∼= Aut(G2);
2. для любого графа G выполнено Aut(G ) ∼= Aut(G ).

Замечание
• То есть группы автоморфизмов изоморфных графов всегда изоморфны.
• Но обратное наверное. Например, легко построить граф, не изоморфный
своему дополнению. У этих графов группы автоморфизмов будут
изоморфны, а сами графы — нет.
• Порядок группы автоморфизмов тесно связан с числом способов
расставить пометки на вершинах данного непомеченного графа
(или, что тоже самое, с размером класса эквивалентности по отношению
изоморфности, содержащего данный помеченный граф).
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Группа автоморфизмов и число способов расставить пометки

Лемма
Пусть G — помеченный граф и n = v(G ). Тогда существует ровно n!

|Aut(G)|
помеченных графов на том же множестве вершин, изоморфных G .
Доказательство. Не умаляя общности будем считать, что V (G ) = [1..n].
• Пусть Gn — множество всех помеченных графов на множестве [1..n].
• Рассмотрим следующее действие группы Sn на множестве Gn:

I для любых σ ∈ Sn и H ∈ Gn обозначим через σH граф с
V (σH) = [1..n] и E (σH) = {σ(x)σ(y) | xy ∈ E (H)}.

• Тогда
I 〈G 〉 — множество всех графов на множестве [1..n], изоморфных G ;
I St(G ) = Aut(G ).

• Следовательно, по теореме из курса алгебры получаем, что

|〈G 〉| = |Sn|
|St(G )|

=
n!

|Aut(G )|
.
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Задачи о раскрашивании ожерелья

• Сейчас мы отложим на некоторое время задачу о перечислении
непомеченных графов и рассмотрим две более простые задачи о
перечислении непомеченных объектов.
1. На окружности расставлены n точек, разбивающие её на равные дуги.

Сколькими способами можно раскрасить эти точки в a цветов, если
раскраски, отличающиеся друг от друга поворотом окружности,
считаются одинаковыми?

– Как обычно, под раскраской множества M в a цветов мы понимаем
отображение c : M → [1..a].

– Неформальная формулировка: Дана карусель с n одинаковыми
кабинками. Сколькими способами можно раскрасить кабинки в a цветов?

2. Тот же вопрос, но одинаковыми считаются раскраски, отличающиеся
либо поворотом, либо осевой симметрией.

– Неформальная формулировка: Дано ожерелье с n одинаковыми
бусинками. Ожерелье можно как угодно поворачивать и переворачивать.
Сколькими способами можно раскрасить бусинки в a цветов?
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Простой частный случай задачи о каруселях

Утверждение
Пусть p ∈ P. Тогда существует ровно ap−a

p + a = ap+(p−1)a
p раскрасок p точек

на окружности в a цветов, если раскраски, отличающиеся друг от друга
поворотом окружности, считаются одинаковыми.
Доказательство. Занумеруем все точки в порядке обхода по часовой стрелке
числами от 0 до p − 1.
• Номера точек мы будем рассматривать по модулю p.

I То есть можно считать, что мы нумеруем точки
элементами кольца Z/pZ.

• Тогда поворот окружности на угол 2πk
n переводит точку с номером i

в точку номер i + k .
I Число k также можно рассматривать как элемент кольца Z/pZ.
I То есть всего получаем p различных поворотов.

• Рассмотрим произвольную раскраску c : Z/pZ→ [1..a] точек окружности
в a цветов.
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Простой частный случай задачи об ожерелье
• Докажем, что для раскраски c выполнено ровно одно из следующих двух
утверждений:

I либо раскраска не изменяется ни при каком повороте (и тогда цвета
всех точек одинаковы);

I либо все p возможных поворотов приводят к различным раскраскам.
• Пусть раскраска c не изменилась при повороте на угол 2πk

n , где 0 < k < p.
I Тогда c(0) = c(k) = c(2k) = . . . = c((p − 1)k).
I Заметим, что 0, k, 2k , . . . , (p − 1)k — это все элементы кольца Z/pZ.
I Следовательно, цвета всех точек при раскраске c одинаковы.

• Всего есть ap различных раскрасок помеченных точек. Среди них есть
a одноцветных. Остальные ap − a раскрасок разбиваются на ap−a

p классов
эквивалентности, по p раскрасок в каждом.
• Итого, получаем ap−a

p + a раскрасок с точностью до поворота.

Следствие (Малая теорема Ферма)
Пусть a ∈ N и p ∈ P. Тогда ap − a

... p.
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Классы эквивалентности и действие группы на множестве
• Описанный выше метод трудно применять к общему случаю задачи о раскраске
ожерелья (или карусели), поскольку при составном n возможны нетривиальные
раскраски, переходящие в себя при повороте на ненулевой угол.
• Поэтому давайте посмотрим на эти задачи с точки зрения теории групп.
• Во всех задачах о перечислении непомеченных объектов мы ищем количество
классов эквивалентности, на которые разбивается множество помеченных
объектов.
• Классы эквивалентности образуются в результате применения к помеченным
объектам некоторых преобразований. Как правило, эти преобразования образуют
группу.

I В случае задачи о раскраски карусели, преобразование — это поворот;

I в случае задачи о раскраски ожерелья — поворот или осевая симметрия;

I в случае задачи о перечислении графов, преобразование – это любая
перестановка на множестве его вершин.

• В любом из этих случаев, мы имеем дело с действием некоторой группы на
множестве помеченных объектов. Интересующие нас классы эквивалентности —
это орбиты элементов множества при данном действии.
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Лемма Бернсайда

Определение
Пусть задано действие группы A на множестве X . Тогда для любого α ∈ A

• Fix(α) def
= {x ∈ X | αx = x} — множество неподвижных точек элемента α;

• элементы множества Fix(α) — неподвижные точки элемента α.

Утверждение∑
α∈A
|Fix(α)| =

∑
x∈X
|St(x)|.

Доказательство. Обе части равны |{(α, x) ∈ A× X | αx = x}|.

Теорема (Лемма Бернсайда)
Количество орбит действия группы A на множестве X равно 1

|A|
∑
α∈A
|Fix(α)|.

Доказательство. Присвоим каждому элементу x ∈ X вес w(x)
def
= 1
|〈x〉| .

• Тогда сумма весов элементов любой орбиты равна 1.
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Доказательство леммы Бернсайда

• Следовательно, сумма весов всех элементов множества X равна
количеству орбит (обозначим его N).

• Тогда N =
∑
x∈X

1
|〈x〉| =

∑
x∈X

|St(x)|
|〈x〉||St(x)| =

1
|A|
∑
x∈X
|St(x)| = 1

|A|
∑
α∈A
|Fix(α)|.

Замечание
Доказанное выше утверждение обычно называют леммой Бернсайда. Но оно
было известно и ранее. Сам William Burnside в своей книге “Theory of Groups
of Finite Order” 1897 года называл первооткрывателем этой леммы
Фробениуса. Но судя по всему, это утверждение было известно еще раньше.
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Задача о каруселях: общий случай

Теорема
Пусть a, n ∈ N. Тогда существует ровно 1

n

∑
d |n
ϕ( nd )a

d раскрасок n точек на

окружности в a цветов, если раскраски, отличающиеся друг от друга
поворотом окружности, считаются одинаковыми.
Доказательство. Как и ранее, занумеруем точки на окружности элементами
кольца Z/nZ.
• Пусть X = {c | c : Z/nZ→ [1..a]} — множество всех раскрасок точек
в a цветов.
• Повороты окружности можно рассматривать как действие циклической
группы Cn порядка n на этом множестве.

I Пусть образующая ε группы Cn соответствует повороту на угол 2π
n .

I Тогда элемент εk соответствует повороту на угол 2πk
n .

• Пусть раскраска c является неподвижной точкой для элемента εk .
• Докажем, что раскраска c является d-периодичной, где d = (k , n)
(т. е. что ∀i (c(i) = c(i + d))).
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Задача о каруселях: общий случай
• Пусть d = sk + tn — линейное представление НОД.
• Тогда c(i) = c(i + sk) = c(i + sk + tn) = c(i + d).
• Обратно, любая d-периодичная раскраска, очевидно, является
неподвижной точкой для элемента εk .
• Итак, Fix(εk) — это в точности множество всех d-периодичных раскрасок,
где d = (k , n).
• Тогда |Fix(εk)| = ad , поскольку любая d-периодичная раскраска
однозначно задается цветами точек 0, 1, . . . , d − 1.
• Следовательно, по лемме Бернсайда, число раскрасок с точностью до

поворота равно 1
n

n−1∑
k=0

a(k,n).

• Далее, запишем числа k и n в виде k = k1d и n = n1d . Тогда (k1, n1) = 1.
То есть число k1 можно выбрать ϕ(n1) способами. Следовательно,
существует ровно ϕ( nd ) таких k , что d = (k , n).

• Таким образом, число раскрасок равно 1
n

n−1∑
k=0

a(k,n) = 1
n

∑
d |n
ϕ( nd )a

d .
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Задача об ожерелье: общий случай

Теорема
Пусть a, n ∈ N. Обозначим через B(n, a) количество раскрасок n точек на
окружности в a цветов, если раскраски, отличающиеся друг от друга
поворотом окружности или осевой симметрией, считаются одинаковыми.
Тогда
• B(n, a) = 1

2n
∑
d |n
ϕ( nd )a

d + ak

2 , при n = 2k − 1;

• B(n, a) = 1
2n
∑
d |n
ϕ( nd )a

d + ak (a+1)
4 , при n = 2k .

Доказательство. В отличии от предыдущей теоремы, здесь нужно
рассматривать на множестве всех раскрасок действие группы Dn.

I Dn — это группа самосовмещений правильного n-угольника или
диэдральная группа.

I В этой группе 2n элементов: n из них соответствуют поворотам,
оставшиеся n — осевым симметриям.

I Также эту группу можно представлять себе как группу автоморфизмов
цикла на n вершинах.
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Задача об ожерелье: общий случай

• Мы уже знаем, что число неподвижных точек поворота на угол 2πk
n

равно a(k,n).
• Посчитаем число неподвижных точек для осевой симметрии. То есть
количество раскрасок, симметричных относительно данной оси.

I При n = 2k − 1 любая ось симметрии проходит через одну из
отмеченных точек. Остальные 2k − 2 точки разбиваются на пары
симметричных. Точки в каждой паре должны быть одного цвета.
Итого, нам нужно выбрать цвета k точек: по одной точке в каждой паре
и точки, лежащей на оси симметрии. Таких раскрасок ak .

I При n = 2k оси симметрии бывают двух видов: n/2 осей не проходят
через отмеченные точки и n/2 проходят через две отмеченные точки.
В первом случае раскраска однозначно задается выбором цветов k
точек, а во втором — выбором цветов k + 1 точки. То есть в первом
случае получаем ak раскрасок, а во втором — ak+1.
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Задача об ожерелье: общий случай

• Тогда при n = 2k − 1 получаем, что

B(n, a) = 1
2n

(
n−1∑
k=0

a(k,n) + nak
)

= 1
2n
∑
d |n
ϕ( nd )a

d + ak

2 .

• А при n = 2k получаем

B(n, a) = 1
2n

(
n−1∑
k=0

a(k,n) + n
2a

k + n
2a

k+1
)

= 1
2n
∑
d |n
ϕ( nd )a

d + ak (a+1)
4 .



Дискретная
математика.

Глава 9.
Перечисление
непомеченных

объектов.

А. В. Пастор

Асимптотика числа графов с точностью до изоморфизма
• Введем следующие обозначения.

I Gn — число помеченных графов на n вершинах;
I gn — число графов на n вершинах с точностью до изоморфизма.

• Мы уже знаем, что Gn = 2
n(n−1)

2 .
• Оказывается, что gn примерно в n! раз меньше.

I Неформально это означает, что почти у всех графов группа
автоморфизмов тривиальна (т. е. состоит из единственного элемента:
тождественного преобразования).

Теорема

gn ∼ Gn
n! = 2

n(n−1)
2
n! .

Доказательство. Пусть Gn — множество всех помеченных графов
на множестве вершин V = [1..n].
• Как и ранее, рассмотрим следующее действие группы Sn на множестве Gn:

I для любых σ ∈ Sn и H ∈ Gn обозначим через σH граф с
V (σH) = V и E (σH) = {σ(x)σ(y) | xy ∈ E (H)}.
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Асимптотика числа графов с точностью до изоморфизма
• Нам нужно посчитать число неподвижных точек для перестановки σ ∈ Sn.
• Для этого рассмотрим множество V (2) двухэлементных подмножеств
множества V .

I Другими словами, V (2) — это множество ребер полного графа Kn на
множестве вершин V .

• Заметим, что группа Sn действует также и на множестве V (2):
σ · xy def

= σ(x)σ(y). Тем самым, каждая перестановка σ ∈ Sn индуцирует
перестановку σ′ ∈ S(V (2)), а группа Sn индуцирует подгруппу S

(2)
n < S(V (2)),

состоящую из всех перестановок множества V (2) вида σ′.
I Группа S

(2)
n называется парной группой группы Sn.

I Фактически, мы построили гомоморфизм групп Sn → S(V (2)).
Группа S

(2)
n — это образ данного гомоморфизма.

I Нетрудно проверить, что при n > 2 группы Sn и S
(2)
n изоморфны.

• Для перестановки σ ∈ Sn нас будут интересовать циклы соответствующей
ей перестановки σ′ ∈ S

(2)
n . Эти циклы мы будем называть рёберными

циклами перестановки σ.



Дискретная
математика.

Глава 9.
Перечисление
непомеченных

объектов.

А. В. Пастор

Асимптотика числа графов с точностью до изоморфизма

• Заметим, что граф G ∈ Gn является неподвижной точкой для
перестановки σ ∈ Sn, если и только если для любого рёберного цикла C
перестановки σ либо C ⊂ E (G ), либо C ∩ E (G ) = ∅.
• Тем самым, |Fix(σ)| = 2q(σ), где q(σ) — число рёберных циклов
перестановки σ.
• Тогда по лемме Бернсайда, gn = 1

n!

∑
σ∈Sn

2q(σ).

• Обозначим через Sn,k множество перестановок из Sn, имеющих ровно
n − k неподвижных точек.

• Пусть g
(k)
n = 1

n!

∑
σ∈Sn,k

2q(σ). Тогда gn =
n∑

k=0
g
(k)
n .

I Очевидно, что g
(0)
n = 1

n!2
n(n−1)

2 .

I То есть нам нужно доказать, что gn ∼ g
(0)
n .
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Асимптотика числа графов с точностью до изоморфизма

Лемма
Если σ ∈ Sn,k , то q(σ) ≤ C 2

n + 1
2(k − nk + k2

2 ).
Доказательство. Пусть перестановка σ имеет t рёберных циклов длины 1.
• Тогда оставшиеся n(n−1)

2 − t пар вершин разбиты на рёберные циклы
длины хотя бы 2.
• Следовательно, рёберных циклов длины хотя бы 2 не более n(n−1)

4 − t
2 .

• Это означает, что q(σ) ≤ n(n−1)
4 − t

2 + t = n(n−1)
4 + t

2 .
• Осталось заметить, что рёберными циклами длины 1 перестановки σ
могут быть лишь

I пары из двух неподвижных точек перестановки σ (их (n−k)(n−k−1)
2 );

I пары вершин, образующих цикл длины 2 перестановки σ
(их не более, чем k

2 ).

• Итого, t ≤ (n−k)(n−k−1)
2 + k

2 = n2−2nk+k2−n+2k
2 = n(n−1)

2 + (k − nk + k2

2 ).

• Таким образом, q(σ) ≤ n(n−1)
4 + t

2 ≤
n(n−1)

2 + 1
2(k − nk + k2

2 ).
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Асимптотика числа графов с точностью до изоморфизма

• Заметим, что |Sn,k | ≤ C k
n · k! = n!

(n−k)! ≤ nk .

• Тогда g
(k)
n ≤ 1

n! |Sn,k |2
C2
n+

1
2 (k−nk+

k2
2 ) ≤ g

(0)
n nk2

k
2 (1−n+

k
2 ) ≤

≤ g
(0)
n

(
n

2
1
2 (n−1− k

2 )

)k

≤ g
(0)
n

(
n

2
n−2
4

)k

= g
(0)
n

(
n
√
2

2
n
4

)k

.

• Следовательно, 1 ≤ gn

g
(0)
n

≤
n∑

k=0

(
n
√
2

2
n
4

)k

≤ 1

1− n
√

2
2
n
4

−−−→
n→∞

1.

• Тогда по теореме о двух милиционерах
gn

g
(0)
n

−−−→
n→∞

1,

а это и означает, что

gn ∼ g
(0)
n =

Gn

n!
=

2
n(n−1)

2

n!
.


