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Дискретное вероятностное пространство

Определение
• Дискретным вероятностным пространством называется упорядоченная
пара (Ω,P), где Ω — конечное множество и P : Ω→ [0, 1] — такая функция,
что

∑
ω∈Ω P(ω) = 1.

• Элементы множества Ω называются элементарными событиями, а
само Ω — пространством элементарных событий или пространством исходов.
• Величина P(ω), где ω ∈ Ω, называется вероятностью элементарного
события ω. Функция P называется распределением вероятностей.
• Событием называется любое подмножество A ⊂ Ω.

• Вероятностью события A ⊂ Ω называется величина P(A)
def
=
∑

ω∈A P(ω).
• ∅ — невозможное событие. Очевидно, что его вероятность равна нулю.
Но могут быть и другие события, имеющие нулевую вероятность.

Замечание
• Удобно считать, что Ω = {ω1, . . . , ωn} и P(ωi ) = pi .
• Тогда ∀i (0 ≤ pi ≤ 1) и p1 + . . .+ pn = 1.
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Дискретное вероятностное пространство: примеры
1. Пусть мы n раз подбросили монетку и после каждого подбрасывания

отмечаем, упала ли она орлом или решкой.
• Если выпал орел, будем писать 1, а если выпала решка — 0.
• Элементарным событием будем считать совокупность результатов
всех n подкидываний.
• То есть Ω = {(a1, . . . , an) | ∀i ai ∈ {0, 1}} = {0, 1}n. Элементы Ω
соответствуют подмножествам [1..n] — случайное подмножество.
• Будем считать, что вероятности всех элементарных событий равны.
Тогда ∀ω ∈ Ω (P(ω) = 1

2n ).
• В получившемся вероятностном пространстве можно рассмотреть,
например, следующие события.

– A: “При первом подбрасывании выпал орел”;
– B: “При втором подбрасывании выпала решка”;
– C : “Результаты первого и второго подбрасываний одинаковы”.

• Легко видеть, что P(A) = P(B) = P(C ) = 1
2 .

Определение
Распределение вероятностей называется равномерным,
если вероятности всех элементарных событий равны.
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Дискретное вероятностное пространство: примеры
2. Снова подбросим n раз монетку. Но распределение вероятностей

выберем другое.
• Пусть p, q ≥ 0 таковы, что p + q = 1.
• Обозначим через s(ω) число выпавших орлов в элементарном
событии ω. (Т. е. s(a1, . . . , an) = a1 + . . .+ an).

• Пусть P(ω)
def
= ps(ω)qn−s(ω).

• Заметим, что
∑

ω∈Ω P(ω) =
∑n

k=0 C
k
n p

kqn−k = (p + q)n = 1,
следовательно, (Ω,P) — дискретное вероятностное пространство.
• Рассмотрим следующие события:

– Si
def
= {ω ∈ Ω | s(ω) = i}, где i ∈ [0..n], — “выпало ровно i орлов”;

– Tj
def
= {(a1, . . . , an) ∈ Ω | aj = 1}, j ∈ [1..n], — “на j-м шаге выпал орёл”.

• Легко видеть, что P(Si ) = C i
np

iqn−i ;
• Далее, P(Ti ) =

∑n−1
k=0 C

k
n−1p

k+1qn−1−k = p(p + q)n−1 = p.
• Последнее равенство означает, что на i-м шаге с вероятностью p
выпадет орел и с вероятностью q — решка.
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Дискретное вероятностное пространство: примеры
3. Заметим, что события Si из предыдущего примера образуют разбиение

множества Ω.
• Тогда P(S0) + P(S1) + . . .+ P(Sn) = 1.
• Это означает, что Si можно рассматривать как элементарные события.
• Более точно, пусть Ω′ = {S0,S1, . . . ,Sn} и P(Si ) = C i

np
iqn−i .

Тогда пара (Ω′,P) является дискретным вероятностным пространством.

Определение
Распределение вероятностей, задаваемое формулой P(Si ) = C i

np
iqn−i ,

называется биномиальным.

Замечание
• На самом деле, рассуждения из второго примера хочется проводить в обратную
сторону: сказать, что при каждом подбрасывании монетки орел выпадает с
вероятностью p, а решка — с вероятностью q, и из этого вывести вероятности
других событий.
• Для того, чтобы делать это корректно, нам нужно будет ввести понятия условной
вероятности и независимых событий.
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Условная вероятность
• Пусть (Ω,P) — дискретное вероятностное пространство; A,B ⊂ Ω.
• Будем обозначать через AB событие, задаваемое множеством A ∩ B .
(Т. е. AB — это событие, означающее то, что одновременно произошли
события A и B .)

Определение
Пусть P(B) > 0. Тогда условной вероятностью события A при условии
события B называется величина P(A | B)

def
= P(AB)

P(B) .

Замечание
То есть мы предполагаем, что событие B выполнено: рассматриваем только
те исходы, при которых это так. И считаем среди них долю тех исходов, для
которых выполнено A. Эта доля и есть условная вероятность.

Лемма (Формула Байеса)
P(B | A) = P(B)P(A|B)

P(A) .

Доказательство. P(B | A)P(A) = P(AB) = P(B)P(A | B).



Дискретная
математика.

Глава 8.
Дискретная
вероятность.

А. В. Пастор

Формула полной вероятности

Теорема (Формула полной вероятности)
Пусть Ω = B1 ∪ . . . ∪ Bm — разбиение Ω и ∀i P(Bi ) > 0.

Тогда P(A) =
m∑
i=1

P(A | Bi )P(Bi ).

Доказательство. Пусть Ai
def
= ABi = A ∩ Bi .

• Тогда A = A1 ∪ . . . ∪ Am — разбиение A.

• Следовательно, P(A) =
m∑
i=1

P(Ai ) =
m∑
i=1

P(A | Bi )P(Bi ).

Теорема (Байеса)
Пусть Ω = B1 ∪ . . . ∪ Bm — разбиение Ω и ∀i P(Bi ) > 0.
Тогда P(Bi | A) = P(A|Bi )P(Bi )∑m

j=1 P(A|Bj )P(Bj )
.

Доказательство. P(A | Bi )P(Bi ) = P(ABi );
m∑
i=1

P(A | Bi )P(Bi ) = P(A).

• Тогда P(A|Bi )P(Bi )∑m
j=1 P(A|Bj )P(Bj )

= P(ABi )
P(A) = P(Bi | A).
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Независимые события

Определение
• События A и B независимы, если P(AB) = P(A)P(B).
• События A1, . . . ,An независимы, если для любых k ∈ [1..n] и
1 ≤ i1 < i2 < . . . < ik ≤ n выполнено P(Ai1 . . .Aik ) = P(Ai1) . . .P(Aik ).

Замечание
• Независимость не означает отсутствия пересечения.
Если A ∩ B = ∅, то события A и B зависимы!
• Попарная независимость n событий не означает того,
что все n событий независимы.

I Например, события A, B и C из первого примера попарно независимы.
Но все вместе они зависимы: P(ABC ) = 0, но P(A)P(B)P(C ) = 1

8 .
• Во втором примере события T1, . . . ,Tn независимы
(напомним, что Tj — это событие “на j-м шаге выпал орёл”).
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Независимые события

Утверждение
Если A и B независимы, то A и B тоже независимы.
Доказательство.
P(AB) = P(A)− P(AB) =

= P(A)− P(A)P(B) =
= P(A)(1− P(B)) = P(A)P(B).

Замечание
• Аналогично можно доказать, что если события A1, . . . ,Ai , . . . ,An

независимы, то и A1, . . . ,Ai , . . . ,An независимы.
• Тогда независимым будет также и любой набор событий вида A′1, . . . ,A

′
n,

где для любого j событие A′j — это либо Aj , либо Aj .
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Случайные величины

• Пусть (Ω,P) — дискретное вероятностное пространство.

Определение
• Случайной величиной называется произвольное отображение ξ : Ω→ R.

Примеры

1. Если Ω — множество результатов n подбрасываний монетки, то s(ω)
(количество выпавших “орлов”) является случайной величиной.

2. Каждому событию A ⊂ Ω соответствует случайная величина,
являющаяся характеристической функцией множества A:

χA(ω)
def
=

{
0, ω /∈ A
1, ω ∈ A.

• Пусть ξ : Ω→ R — случайная величина и X = ξ(Ω) — множество значений
случайной величины ξ. Тогда мы можем рассматривать события вида
ξ(ω) = x , где x ∈ X , или ξ(ω) ∈ B , где B ⊂ X . Тем самым, мы получаем
распределение вероятностей на множестве X .
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Случайные величины: распределение и независимость

• Пусть X = {x1, . . . , xm}. Тогда Pξ(xi )
def
= P({ω ∈ Ω | ξ(ω) = xi}).

• Очевидно, что Pξ(x1) + . . .+ Pξ(xm) = 1.
• Следовательно, (X ,Pξ) — дискретное вероятностное пространство.
• Функция Pξ называется распределением случайной величины ξ.
• Для обозначения индуцированной вероятности мы также будем
использовать также обозначение P{ξ = xi}.

Определение
Случайные величины ξ1, . . . , ξr : Ω→ X называются независимыми, если
∀t1, . . . , tr ∈ X (P{ξ1 = t1, . . . , ξr = tr} = P{ξ1 = t1} . . .P{ξr = tr}).

Замечание
Если события A1, . . . ,Ar независимы если и только если их
характеристические функции χA1 , . . . , χAr — независимые случайные
величины.
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Случайные величины: математическое ожидание

Определение
• Пусть ξ : Ω→ X — случайная величина.
• Математическим ожиданием случайной величины ξ называется число

Eξ
def
=
∑
ω∈Ω

ξ(ω)P(ω).

Замечание
• Очевидно, что Eξ =

∑
x∈X

xP{ξ = x}.

• Если ξ1, . . . , ξr : Ω→ X — случайные величины, то
E (ξ1 + . . .+ ξr ) = Eξ1 + . . .+ Eξr .
• Другое обозначение для математического обозначения: Mξ.
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Матожидание произведения независимых случайных величин

Теорема
Если случайные величины ξ1, . . . , ξr : Ω→ X независимы, то
E (ξ1 . . . ξr ) = Eξ1 . . .Eξr .
Доказательство. Пусть случайная величина ξ1 . . . ξr принимает значения
из множества Xr .
• Заметим, что Xr состоит из произведений вида x1 . . . xr , где ∀i (xi ∈ X ).
• Тогда
E (ξ1 . . . ξr ) =

∑
x∈Xr

xP{ξ1 . . . ξr = x} =

=
∑

x1,...,xr∈X
x1 . . . xrP{ξ1 = x1, . . . , ξr = xr} =

=
∑

x1,...,xr∈X
x1 . . . xrP{ξ1 = x1} . . .P{ξr = xr} =

=

( ∑
x1∈X

x1P{ξ1 = x1}
)
. . .

( ∑
xr∈X

xrP{ξr = xr}
)

= Eξ1 . . .Eξr .
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Вероятность в комбинаторике: простейший пример применения
• Основная идея: если нам нужно доказать существование объекта,
обладающего нужным нам свойством, выбираем случайный объект и
оцениваем вероятность того, что требуемое свойство выполняется.
Если эта вероятность больше нуля (или, что эквивалентно, если вероятность
того, что свойство не выполняется, меньше единицы), то интересующий нас
объект существует.
• В простейшем варианте этот метод эквивалентен уже известному вам из
курса теории графов методу оценки числа возможных конфигураций. Но
бывают и более сложные случаи.
• В качестве первого примера докажем новым способом нижнюю оценку
числа Рамсея. Фактически это будет то же самое доказательство, которое
вы уже знаете, только пересказанное на языке теории вероятностей.
• Напомним, что числа Рамсея r(m, n) — это наименьшее из всех таких
чисел x ∈ N, что при любой раскраске рёбер полного графа на x вершинах в
два цвета обязательно найдётся клика на n вершинах с рёбрами цвета 1 или
клика на m вершинах с рёбрами цвета 2.
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Вероятностное доказательство нижней оценки r(k , k)

Теорема (P. Erdös, 1947)
Для любого натурального k ≥ 2 выполняется неравенство r(k , k) ≥ 2k/2.
Доказательство. Пусть k ≥ 3 и n < 2k/2 (случай k = 2 тривиален).
• Рассмотрим полный граф G на n вершинах и раскрасим его ребра в два
цвета случайным образом.

I То есть мы C 2
n раза подбрасываем монетку и выбираем цвет очередного ребра

в зависимости от результата подбрасывания.
I Все исходы равновероятны. То есть каждое ребро может быть покрашено в

цвет 1 или в цвет 2 с вероятностью 1/2 и все эти события независимы.
• Для любого подмножества S ⊂ V (G ), где |S | = k , определим событие As :
“все ребра подграфа G (S) одноцветны”. Тогда P(AS) = 2 · 2−C2

k .
• Тогда
P(∪|S |=kAS) ≤

∑
|S|=k P(AS) = 2 · 2−C2

k · C k
n = 2

2k(k−1)/2 ·
n(n−1)...(n−k+1)

k! <

< 2
2k(k−1)/2 · n

k

k! <
2

2k(k−1)/2 · 2k
2/2

k! = 2(k+2)/2

k! < 1, при k ≥ 3.
• Следовательно, существует раскраска, при которой
нет одноцветной клики размера k .
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Турнир с наименьшим ациклическим подтурниром
• Обозначим через v(n) наибольшее целое число, для которого всякий
турнир на n вершинах содержит ациклический подтурнир на v(n) вершинах.
• Другими словами, v(n) — это такое наибольшее целое число v , что
в любом турнире T с множеством вершин V (T ) = {u1, . . . , un} можно
выбрать такую последовательность вершин (ui1 , . . . , uiv ), что все стрелки
между её вершинами будут направлены слева направо
(т. е. при 1 ≤ k < ` ≤ n имеем uikui` ∈ A(T )).

Теорема (P. Erdös, L.Moser, 1964)
v(n) ≤ 1 + [2 log2 n].
Доказательство. Пусть t ≥ 2 + [2 log2 n].
• Нужно доказать, что существует такой турнир на n вершинах,
в котором нет ациклического подтурнира на t вершинах.
• Построим случайный турнир на n вершинах.

I То есть зафиксируем множество вершин V (T ) = {u1, . . . , un} и зададим
направления его стрелок при помощи C 2

n подбрасываний монетки.
I Все исходы равновероятны. То есть каждая стрелка может быть направлена в

любую из двух сторон с вероятностью 1/2 и все эти события независимы.
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Доказательство теоремы Эрдёша-Мозера

• Пусть P = {(ui1 , . . . , uit ) | ik 6= i` при k 6= `} — множество всех
последовательностей из t различных вершин.
• Для каждой последовательности S = (ui1 , . . . , uit ) ∈ P определим
событие AS : ∀k , ` ∈ [1..t] (k < `→ uikui` ∈ A(T )).

I Тогда P(AS) = 2−C
2
t = 2−

t(t−1)
2 ≤ 2−

t(1+[2 log2 n])
2 ≤ 2−t log2 n = n−t .

I Всего последовательностей |P| = At
n = n(n − 1) . . . (n − t + 1) < nt .

• Тогда P(∪S∈PAS) ≤
∑

S∈P P(AS) < ntn−t = 1.
• Следовательно, найдется турнир в котором нет ациклического подтурнира
на t вершинах.

Замечание
• R. Stearns доказал, что v(n) ≥ 1 + [log2 n].
• Тем самым, 1 + [log2 n] ≤ v(n) ≤ 1 + [2 log2 n].
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(n, k)-универсальные множества
• Пусть a = (a1, . . . , an) ∈ {0, 1}n — 0-1 вектор и
S = {i1, . . . , ik} — набор координат (1 ≤ i1 < . . . < ik ≤ n).

• Тогда a|S
def
= (ai1 , . . . , aik ) — проекция вектора a на координаты из S .

• Аналогично, если A ⊂ {0, 1}n, то A|S
def
= {(ai1 , . . . , aik ) | (a1, . . . , an) ∈ A} —

проекция множества A на координаты из S .

Определение
Множество A ⊂ {0, 1}n называется (n, k)-универсальным, если для любого
набора координат S = {i1, . . . , ik}, где 1 ≤ i1 < . . . < ik ≤ n, проекция A|S
содержит все 2k возможных комбинаций нулей и единиц.

Теорема (D. J. Kleitman, J. Spencer, 1973)
Пусть n, k, r ∈ N таковы, что n ≥ k и C k

n 2
k(1− 2−k)r < 1.

Тогда существует (n, k)-универсальное множество размера r .
Доказательство. Рассмотрим случайную матрицу M размера n × r
с коэффициентами из {0, 1}.
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Доказательство теоремы Клейтмана-Спенсера

• То есть мы nr раз подкидываем монетку и определяем значения всех
коэффициентов mij этой матрицы. Каждый из коэффициентов будет равен
0 или 1 с вероятностью 1/2 и все эти события независимы.
• Обозначим через A множество строк матрицы M. Её i-ю строку будем
обозначать ai .
• Для фиксированного набора координат S = {j1, . . . , jk}, где
1 ≤ j1 < . . . < jk ≤ n, и фиксированного вектора v ∈ {0, 1}k посчитаем
вероятность того, что проекция A на координаты из S не содержит v .

• P(v /∈ A|S) =
r∏

i=1
P(v 6= ai |S) =

r∏
i=1

(1− 2−k) = (1− 2−k)r .

• Тогда вероятность того, что множество A не является
(n, k)-универсальным не превосходит C k

n 2
k(1− 2−k)r < 1.

Для того, чтобы показать, как из этой теоремы следует существование
(n, k)-универсального множества малого размера, нам потребуется
следующая лемма.
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(n, k)-универсальные множества малого размера

Лемма
При всех x ∈ R выполнено неравенство ex ≥ x + 1, причем равенство
достигается только при x = 0.
Доказательство. Рассмотрим функцию f (x) = ex − x − 1.
• f ′(x) = ex − 1, следовательно, f ′(x) < 0 при x < 0 и f ′(x) > 0 при x > 0.
• Тогда f (x) убывает на (−∞, 0) и возрастает на (0,+∞).
• Таким образом, при x 6= 0 имеем f (x) > f (0) = 0.

Следствие (A. K. Chandra, L. Kou, G.Markowsky, S. Zaks, 1983)
При любых n ≥ 2 и k ≥ 4 существует (n, k)-универсальное множество
размера не более dk2k ln ne.
Доказательство. Пусть r = dk2k ln ne. Тогда

• C k
n 2

k(1− 2−k)r < nk

k! · 2
ke−r/2

k ≤ (2n)k

k! · e
−k ln n = (2n)k

k! · n
−k = 2k

k! < 1.
• Следовательно, по теореме Клейтмана-Спенсера существует
(n, k)-универсальное множество размера r .
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(n, k)-универсальные множества малого размера

Замечание
На самом деле можно доказать, что (n, k)-универсальные множества
размера не более dk2k ln ne существуют при любых k ∈ N и n ≥ 2.
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Математическое ожидание в комбинаторных доказательствах

• Использование математического ожидания в доказательстве
комбинаторных фактов основывается на следующих фактах.

Утверждение
• Пусть (Ω,P) — дискретное вероятностное пространство и ξ : Ω→ X —
случайная величина, такая, что E (ξ) ≥ λ. Тогда существует элементарное
событие ω ∈ Ω, такое, что ξ(ω) ≥ λ.
• Аналогично, если E (ξ) ≤ λ, то существует элементарное событие ω ∈ Ω,
такое, что ξ(ω) ≤ λ.
Доказательство.
• Докажем первое утверждение (второе доказывается аналогично).
• Предположим противное: пусть ∀ω ∈ Ω (ξ(ω) < λ).
• Тогда E (ξ) =

∑
ω∈Ω P(ω)ξ(ω) < λ

∑
ω∈Ω P(ω) = λ. Противоречие.
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Неравенство Маркова

Теорема (Неравенство Маркова)
• Пусть (Ω,P) — дискретное вероятностное пространство, ξ : Ω→ X —
случайная величина, принимающая неотрицательные значения, и λ ∈ R+.
• Тогда P{ξ ≥ λ} ≤ Eξ

λ .
Доказательство.
• Eξ =

∑
x∈X

xP{ξ = x} ≥
∑
x≥λ

λP{ξ = x} = λP{ξ ≥ λ}.
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Гамильтоновы пути в турнирах

Теорема (T. Szele, 1943)
Для любого n ∈ N существует турнир на n вершинах,
в котором есть как минимум n!

2n−1 гамильтоновых путей.
Доказательство. Рассмотрим случайный турнир T
на множестве вершин V (T ) = {u1, . . . , un}.
• Как и раньше, ориентация всех стрелок определяется при помощи C 2

n

подбрасываний монетки; каждая стрелка будет ориентированна в любую из сторон
с вероятностью 1

2 и все эти события независимы.
• Для каждой перестановки σ ∈ Sn обозначим через ξσ
характеристическою функцию следующего события:
“последовательность вершин (uσ(1), . . . , uσ(n)) — гамильтонов путь”.

• Тогда Eξσ = 1
2n−1 .

• Пусть ξ(T )
def
=
∑

σ∈Sn
ξσ(T ) — случайная величина, означающая количество

гамильтоновых путей в случайном турнире T .
• Тогда E (ξ) =

∑
σ∈Sn

E (ξσ) = n!
2n−1 .

• Следовательно, существует турнир T , для которого ξ(T ) ≥ n!
2n−1 .
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Доминирующие множества большого размера

Определение
В графе G множество S ⊂ V (G ) называется доминирующим, если
V (G ) = S ∪ NG (S) (т. е. если любая вершина графа либо принадлежит S ,
либо смежна с вершиной из S).

Теорема (N. Alon, 1990)
Пусть v(G ) = n и δ(G ) = d . Тогда в графе G есть доминирующее
множество размера не более n 1+ln(d+1)

d+1 .
Доказательство. Выделим случайное подмножество S ⊂ V (G ) следующим
образом.
• Каждая вершина будет включаться в S с вероятностью p = ln(d+1)

d+1 .
Все эти события независимы.
• Тогда |S | — случайная величина; E (|S |) = np.
• Для каждого подмножества S ⊂ V (G ) определим подмножество
S

def
= V (G ) \ (S ∪ NG (S)).

• Очевидно, что тогда S ∪ S — доминирующее множество.
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Доказательство теоремы Алона

• Оценим математическое ожидание случайной величина |S |.
• Для этого для каждой вершины v ∈ V (G ) рассмотрим
случайную величину ξv , являющуюся характеристической функцией
события “v ∈ S”.
• Тогда Eξv = (1− p)dG (v)+1 ≤ (1− p)d+1.
• Следовательно, E (|S |) =

∑
v∈V (G) Eξv ≤ n(1− p)d+1 ≤ ne−p(d+1).

• Таким образом, E (|S |+ |S |) ≤ np + ne−p(d+1) = n 1+ln(d+1)
d+1 ,

откуда и следует существование доминирующего множества
размера не более n 1+ln(d+1)

d+1 .
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О графах с большим обхватом и хроматическим числом

• Ниже мы переведем на вероятностный язык доказательство еще одной
известной вам из курса теории графов теоремы.

Теорема (P. Erdös, 1959)
Пусть k , g ∈ N, k , g ≥ 3. Тогда существует граф G с g(G ) ≥ g и χ(G ) ≥ k .
Доказательство (Alon-Spencer, 1992).
• Зафиксируем число θ ∈ (0, 1

g ).
• Выберем достаточно большое n (насколько большим его нужно взять,
мы определим позже) и рассмотрим случайный граф G на n вершинах, в
котором каждая пара вершин соединяется ребром с вероятностью p = nθ−1

(как и раньше, все такие события независимы).
• Рассмотрим случайные величины ξi — количество циклов длины i в

графе G , а также ξ =
g−1∑
i=3

ξi — количество циклов, длина которых меньше g .

• Оценим математическое ожидание этих случайных величин.
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О графах с большим обхватом и хроматическим числом

Утверждение 1
P{Eξ ≥ n

2} −−−→n→∞
0.

Доказательство. В графе G есть ni = n(n − 1) . . . (n − i + 1)
последовательностей вершин длины i .

I Каждая из них задает цикл длины i с вероятностью pi .
I Каждый цикл длины i задается 2i такими последовательностями.

• Итого, Eξi = ni

2i · p
i ≤ (np)i

2i = nθi

2i .

• Тогда Eξ =
g−1∑
i=3

Eξi ≤
g−1∑
i=3

nθi

2i ≤ nθg
g−1∑
i=3

1
2i .

• По неравенству Маркова получаем, что P{Eξ ≥ n
2} ≤

2Eξ
n ≤ nθg−1

g−1∑
i=3

1
i .

• Заметим, что θn − 1 < 0. Следовательно, nθg−1
g−1∑
i=3

1
i −−−→n→∞

0.

• Таким образом, P{Eξ ≥ n
2} −−−→n→∞

0.
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О графах с большим обхватом и хроматическим числом
• Пусть m = d 5

p ln ne. Далее мы оценим вероятность того, что α(G ) ≥ m.

I Отметим, что m ≥ 5n1−θ ln n −−−→
n→∞

∞. В частности, при достаточно
больших n, число m будет натуральным.

Утверждение 2
P{α(G ) ≥ m} −−−→

n→∞
0.

Доказательство. Для любого подмножества S ⊂ V (G ), где |S | = m,
вероятность того, что S — независимое множество, равна (1− p)C

2
m .

• Тогда P{α(G ) ≥ m} ≤ Cm
n · (1− p)C

2
m < nm · (e−p)

m(m−1)
2 =

(
ne−

p(m−1)
2

)m
.

I Заметим, что при m > 2 выполнено неравенство
p(m − 1) ≥ 5 ln n − p > 4 ln n.

I Следовательно, e−
p(m−1)

2 ≤ e−2 ln n = 1
n2 .

I Тогда
(
ne−

p(m−1)
2

)m
≤ 1

nm −−−→n→∞
0.

• Таким образом, P{α(G ) ≥ m} −−−→
n→∞

0.
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О графах с большим обхватом и хроматическим числом

• Итак, мы доказали, что P{Eξ ≥ n
2} −−−→n→∞

0 и P{α(G ) ≥ m} −−−→
n→∞

0.

• Следовательно, при достаточно больших n каждая из вышеприведенных
вероятностей будет меньше 1

2 .
• Выберем n настолько большим, чтобы выполнялись оба условия:
P{Eξ ≥ n

2} <
1
2 и P{α(G ) ≥ m} < 1

2 .
• Тогда найдется такой граф G , что v(G ) = n, α(G ) < m и в G есть
не более n

2 циклов, длина которых меньше g .
• Удалим из каждого такого цикла по вершине. Получим граф G ′,
такой, что v(G ′) ≥ n

2 , g(G ′) ≥ g и α(G ′) ≤ α(G ) ≤ m − 1 ≤ 5n1−θ ln n.

• Тогда χ(G ′) ≥ v(G ′)
α(G ′) ≥

n/2
5n1−θ ln n

= nθ

10 ln n , что больше k при достаточно
большом n.


