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Производящие функции
• Пусть (a0, a1, a2, . . .) — произвольная последовательность чисел.
• Производящей функцией последовательности (an) называется выражение

A(x)
def
=
∑
k≥0

akx
k .

• Например, пусть ak = C k
n (где n ∈ N — фиксировано). Тогда

A(x) =
∑
k≥0

C k
n x

k = (1+ x)n.

• То есть (1+ x)n — производящая функция для последовательности C k
n .

• Еще одним примером построения производящей функции является
доказанное в главе 6 равенство

n∑
k=0

s(n, k)xk = x(x − 1) . . . (x − n + 1).

• То есть x(x − 1) . . . (x − n + 1) — это производящая функция для чисел
Стирлинга первого рода (при фиксированном n).
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Производящие функции: примеры
• При помощи алгебраических преобразований таких выражений часто
удается доказывать те или иные свойства комбинаторных величин.
• В качестве примера рассмотрим формулу, которую мы доказывали на
практике: (C 0

n )
2 + (C 1

n )
2 + . . .+ (Cn

n )
2 = Cn

2n.
Доказательство.

I
∑

k≥0 C
k
2nx

k = (1+ x)2n = ((1+ x)n)2 =

(∑
`≥0 C

`
nx

`

)(∑
`≥0 C

`
nx

`

)
=

=
∑

k≥0

(∑k
`=0 C

`
nC

k−`
n

)
xk .

I Приравнивая коэффициенты при k = n, получаем
Cn

2n =
∑n

`=0 C
`
nC

n−`
n =

∑n
`=0(C

`
n)

2.
• В рассмотренных выше примерах, последовательность была конечной
(точнее, включала конечное число ненулевых членов). Поэтому
производящая функция оказывалась многочленом.
• Несколько сложнее обстоит дело с бесконечными последовательностями.
Для них нужно рассматривать степенные ряды.
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Степенные ряды с точки зрения математического анализа
Пусть A(x) =

∑
k≥0 akx

k — степенной ряд. Мы можем смотреть на него как
на функцию от x . Она будет определена при всех x ∈ R, для которых этот
ряд сходится. Из матанализа известны следующие свойства таких рядов.
• Существует такая константа R ∈ [0,+∞], что при |x | < R ряд A(x)
сходится абсолютно и при |x | > R ряд A(x) расходится.

I Такая константа R называется радиусом сходимости степенного ряда.
I Если брать x ∈ C, то ряд A(x) будет абсолютно сходиться внутри круга

сходимости (т. е. круга радиуса R с центром в нуле) и расходиться вне
этого круга.

I При |x | = R ряд A(x) может как сходиться, так и расходится.
• При любом r < R рад A(x) равномерно сходится на отрезке [−r , r ].
Следовательно, функция A(x) непрерывна и дифференцируема на всем
интервале (−R,R).
• Ряд A(x) можно почленно дифференцировать.

I То есть A′(x) =
∑

k≥1 kakx
k−1. При этом, ряды для A(x) и A′(x) имеют

одинаковые радиусы сходимости.
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Степенные ряды с точки зрения математического анализа

• Аналогично, ряд A(x) можно почленно интегрировать.

I То есть
∫ x

0
A(t) dt =

∑
k≥0

ak
k + 1

xk+1.

I При этом, ряды для A(x) и её первообразной функции имеют
одинаковые радиусы сходимости.

• Если значения функций A(x) =
∑

k≥0 akx
k и B(x) =

∑
k≥0 bkx

k

совпадают всюду в некоторой окрестности нуля, то есть, если

∃δ > 0 ∀x ∈ [0, δ)
(∑

k≥0

akx
k =

∑
k≥0

bkx
k

)
,

то ∀i ai = bi .
• Таким образом, если степенной ряд имеет ненулевой радиус сходимости,
то последовательность однозначно задается своей производящей функцией.
• Однако бывают и степенные ряды с нулевым радиусом сходимости. Таков,
например, ряд

∑
k≥0 k!x

k . Такие ряды сходятся только при x = 0 и говорить
о задаваемой ими функции бессмысленно.
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Формальные степенные ряды
Другой подход заключается в том, что выражение A(x) =

∑
k≥0 akx

k можно
рассматривать как формальный степенной ряд.
• То есть мы смотрим на это выражение как на формальную запись.
Мы не будем пытаться подставлять какие-либо числа вместо x и выяснять,
сходится ли получившийся ряд и к какому именно пределу он сходится.

I Единственным исключением здесь является случай x = 0: мы будем
формально полагать, что A(0) def

= a0.
• Строго говоря, формальный степенной ряд не является функцией.
• Формальный степенной ряд однозначно задается последовательностью
своих коэффициентов.

I Можно считать, что формальный степенной ряд
A(x) = a0 + a1x + a2x

2 + . . . — это и есть
последовательность (a0, a1, a2, . . .).

I Переменная x и её степени пишутся здесь исключительно для удобства.
I В итоге получится определение кольца формальных степенных рядов,

очень похожее на определение кольца многочленов.
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Кольцо формальных степенных рядов

Определение
Пусть K — коммутативное кольцо.
• Кольцо формальных степенных рядов над K состоит из бесконечных
последовательностей (a0, a1, a2, . . .) с коэффициентами из K .
• Сложение и умножение в кольце формальных степенных рядов
осуществляется по следующим формулам.
Пусть A = (a0, a1, . . . , ak , . . .) и B = (b0, b1, . . . , bk , . . .). Тогда

I A+ B
def
= (a0 + b0, a1 + b1, . . . , ak + bk , . . .);

I A · B def
= (c0, c1, . . . , ck , . . .), где ck =

∑k
i=0 aibk−i .

• Кольцо формальных степенных рядов над K обозначается K [[x ]],
где x — формальная переменная.
• Для элемента A = (a0, a1, . . . , ak , . . .) ∈ K [[x ]] мы будем использовать
обозначения A(x) = a0 + a1x + . . .+ akx

k + . . . или A(x) =
∑

k≥0 akx
k .

I Также мы будем использовать обозначение A(0) def
= a0.



Дискретная
математика.

Глава 7. Метод
производящих

функций.

А. В. Пастор

Кольцо формальных степенных рядов: замечания

Замечание
• Очевидно, что в приведенных выше обозначениях выполняются равенства
(A+ B)(0) = A(0) + B(0) и (AB)(0) = A(0)B(0).
• Определение кольца формальных степенных рядов очень похоже на определение
кольца многочленов. Единственным отличием является то, что в определении
кольца формальных степенных рядов отсутствует требование конечности числа
ненулевых коэффициентов.

I То есть K [x ] ⊂ K [[x ]] и при этом сложение и умножение в этих кольцах
осуществляются по одним и тем же формулам. Это означает, что кольцо K [x ]
является подкольцом кольца K [[x ]]. (Но для того, чтобы говорить об этом
строго, нам еще нужно доказать то, что K [[x ]] — кольцо.)

• В основном, мы будем рассматривать кольцо R[[x ]]. Элементы этого кольца
можно рассматривать как степенные ряды в R и, в частности, говорить об их
сходимости при тех или иных значениях x . Можно доказать, что если оба ряда
A(x) и B(x) абсолютно сходятся при некотором x , то определенные выше ряды
для (A+ B)(x) и (AB)(x) также сходятся при том же x и их пределы равны
A(x) + B(x) и A(x)B(x) соответственно.
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Кольцо формальных степенных рядов: доказательство

Теорема
Пусть K — коммутативное кольцо. Тогда K [[x ]] — тоже коммутативное
кольцо. Если при этом K — кольцо с единицей, то K [[x ]] — тоже с единицей.
Доказательство. В целом аналогично доказательству для K [x ].
• Поскольку сложение формальных степенных рядов осуществляется
покоэффициентно, все свойства сложения (коммутативность,
ассоциативность, существование нейтрального и обратного элементов)
непосредственно следуют из аналогичных свойств в кольце K .
• Коммутативность умножения. Пусть A(x) =

∑
k≥0 akx

k ,
B(x) =

∑
k≥0 bkx

k , (AB)(x) =
∑

k≥0 dkx
k и (BA)(x) =

∑
k≥0 d

′
kx

k .
Тогда dk =

∑k
i=0 aibk−i =

∑k
j=0 bjak−j = d ′k .

• Дистрибутивность. Пусть C (x) =
∑

k≥0 ckx
k , (AC )(x) =

∑
k≥0 ekx

k и
(A(B + C ))(x) =

∑
k≥0 fkx

k .
Тогда fk =

∑k
i=0 ai (bk−i + ck−i ) =

∑k
i=0 aibk−i +

∑k
i=0 aick−i = dk + ek .
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Кольцо формальных степенных рядов: доказательство

• Ассоциативность умножения. Пусть ((AB)C )(x) =
∑

k≥0 gkx
k .

• Тогда

gs =
s∑

i=0

dics−i =
s∑

i=0

( i∑
j=0

ajbi−j

)
cs−i =

∑
i+j+k=s

aibjck .

Аналогично доказывается, что коэффициент при x s ряда (A(BC )) равен
тому же числу. Следовательно, (A(BC )) = ((AB)C ).
• Единичный элемент. Если существует 1 ∈ K , то легко видеть, что
единичным элементом в K [[x ]] будет формальный степенной ряд,
соответствующий последовательности (1, 0, 0, . . .).

• Итак, формальные степенные ряды можно складывать, вычитать и
умножать. А можно ли их делить?
• Можно. Но не всегда.
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Обратимые элементы кольца K [[x ]]

• Напомним, что элемент a ∈ K (где K — кольцо с единицей) называется
обратимым, если существует такой элемент b ∈ K , что ab = ba = 1. В этом
случае, элемент b называется обратным к элементу a и обозначается a−1.
• В курсе алгебры доказывалось, что для любого элемента кольца
существует не более одного обратного.
• Множество всех обратимых элементов кольца K обозначается через K ∗.

Теорема
Формальный степенной ряд A(x) =

∑
k≥0 akx

k является обратимым
элементом кольца K [[x ]] если и только если a0 ∈ K ∗.
Доказательство. “⇒”: Пусть B(x) =

∑
k≥0 bkx

k — обратный элемент к A(x).
• Тогда a0b0 = 1, следовательно, a0 ∈ K ∗.

“⇐”: Пусть a0 ∈ K ∗.
• Будем последовательно вычислять коэффициенты bi формального
степенного ряда B(x) =

∑
k≥0 bkx

k , обратного к A(x).
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Обратимые элементы кольца K [[x ]]

• Должны выполняться соотношения
I a0b0 = 1;
I
∑k

i=0 aibk−i = 0, при k > 0.

• Тогда положим b0
def
= a−1

0 ;

• при k > 0 вычисляем bk по формуле bk = a−1
0 (−

∑k
i=1 aibk−i ).

Следствие
Пусть K — поле. Тогда формальный степенной ряд A(x) =

∑
k≥0 akx

k

является обратимым элементом кольца K [[x ]] если и только если a0 6= 0.

Пример
• Пусть A(x) = 1− x .
• Тогда легко видеть, что A−1(x) = 1+ x + x2 + x3 + . . ..
• То есть формула 1

1−x = 1+ x + x2 + x3 + . . ., известная как сумма
геометрической прогрессии, является верным равенством и для
формальных степенных рядов.
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Производящая функция для чисел Фибоначчи
• Напомним, что последовательность чисел Фибоначчи задается
соотношениями F0 = 0,F1 = F2 = 1 и Fn+1 = Fn + Fn−1, при n > 1.

Теорема
Производящая функция для чисел Фибоначчи имеет вид F (x) =

x

1− x − x2 .

Доказательство. Пусть F (x) =
∑

k≥0 Fkx
k .

• Тогда xF (x) =
∑
k≥0

Fkx
k+1 =

∑
k≥1

Fk−1x
k .

• Аналогично, x2F (x) =
∑
k≥0

Fkx
k+2 =

∑
k≥2

Fk−2x
k .

• Тогда
xF (x) + x2F (x) = F0 · x +

∑
k≥2

Fk−1x
k +

∑
k≥2

Fk−2x
k =

=
∑
k≥2

(Fk−1 + Fk−2)x
k =

∑
k≥2

Fkx
k = F (x)− x .

• Следовательно, x = F (x)− xF (x)− x2F (x) = (1− x − x2)F (x),

• откуда F (x) =
x

1− x − x2 .
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Формула для чисел Фибоначчи

Следствие (Формула Бине)

Fk =
1√
5

(1+
√
5

2

)k

−

(
1−
√
5

2

)k
.

Доказательство.

• Заметим, что числа ϕ = 1+
√

5
2 и ϕ′ = 1−

√
5

2 являются корнями квадратного
уравнения t2 − t − 1 = 0. Следовательно, t2 − t − 1 = (t − ϕ)(t − ϕ′).
• Подставив t = 1

x и домножив на x2 получим
1− x − x2 = x2( 1

x2 − 1
x − 1) = x2( 1

x − ϕ)(
1
x − ϕ

′) = (1− ϕx)(1− ϕ′x).

• Тогда F (x) = x
1−x−x2 = 1

ϕ−ϕ′
(

1
1−ϕx −

1
1−ϕ′x

)
= 1√

5

(
1

1−ϕx −
1

1−ϕ′x

)
=

= 1√
5

(∑
k≥0

(ϕx)k −
∑
k≥0

(ϕ′x)k

)
=
∑
k≥0

1√
5
(ϕk − ϕ′k)xk .

• Таким образом, Fk = 1√
5

((
1+
√

5
2

)k
−
(

1−
√

5
2

)k)
.
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Производящая функция для чисел Каталана

Теорема

Производящая функция для чисел Каталана имеет вид C (x) =
1−
√
1− 4x
2x

.

Доказательство. Пусть C (x) =
∑
k≥0

ckx
k .

• Отметим, что ck ≤ C k
2k ≤ 4k при всех k ≥ 0. Поэтому ряд для C (x)

сходится при |x | < 1
4 и дает в пределе непрерывную функцию на (−1

4 ,
1
4).

• Тогда C 2(x) =

(∑
k≥0

ckx
k

)2

=
∑
k≥0

(
k∑

i=0
cick−i

)
xk =

∑
k≥0

ck+1x
k =

C (x)− 1
x

.

• Преобразовав, получим
I 4x2C 2(x) = 4xC (x)− 4x ;
I (2xC (x)− 1)2 = 1− 4x ;
I 2xC (x)− 1 = ±

√
1− 4x ;

I подставив x = 0 убеждаемся, что в правой части должен стоять минус.

• Таким образом, C (x) =
1−
√
1− 4x
2x

.
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Производящая функция для чисел Каталана

Следствие

ck =
C k

2k
k + 1

.

Доказательство. Разложим
√
1− 4x по формуле Тейлора.

•
√
1− 4x =

∑
k≥0

(
1/2
k

)
(−4x)k , где

(
a

k

)
def
=

a(a− 1) . . . (a− k + 1)
k!

.

• C (x) =
1−
√
1− 4x
2x

= − 1
2x

∑
k≥1

(
1/2
k

)
(−4x)k =

= − 1
2x

∑
k≥0

(
1/2
k + 1

)
(−4x)k+1 =

∑
k≥0

(−1)k
(

1/2
k + 1

)
22k+1xk .

• ck = (−1)k
(

1/2
k + 1

)
22k+1 =

(−1)k(1
2)(−

1
2)(−

3
2) . . . (−

2k−1
2 ) · 22k+1

(k + 1)!
=

=
(2k − 1)!! · 2k

(k + 1)!
=

(2k − 1)!! · k! · 2k

k!(k + 1)!
=

(2k)!
k!(k + 1)!

=
C k

2k
k + 1

.
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Композиция формальных степенных рядов
• Пусть A(x) =

∑
k≥0 akx

k и B(x) =
∑

k≥0 bkx
k — формальные степенные

ряды.
• Попытаемся подставить ряд B(x) в A(x). То есть будем пытаться
определить композицию A(B(x)) этих двух рядов.
• Всегда ли такая композиция корректно определена? Не всегда.
• Попробуем определить A(B(x)) =

∑
k≥0 akB

k(x).
I Каждое слагаемое akB

k(x) является формальным степенным рядом.
I Проблема в том, что получается бесконечная сумма формальных

степенных рядов.
I То есть, вычисляя коэффициент при xn нужно будет сложить

бесконечно много слагаемых.
I Однако, если b0 = 0, то ненулевые коэффициенты при xn будут только

в слагаемых akB
k(x) при k ≤ n. В этом случае коэффициент при xn

определяется как сумма лишь конечного числа слагаемых и мы можем
формально определить A(B(x)) как формальный степенной ряд именно
с такими коэффициентами.
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Предел последовательности формальных степенных рядов

Сделаем то же самое более формально.

Определение
• Пусть K — коммутативное кольцо с единицей, в котором нет делителей
нуля, и An(x) =

∑
k≥0 ankx

k — последовательность формальных степенных
рядов из K [[x ]].
• Формальный степенной ряд B(x) =

∑
k≥0 bkx

k называется пределом
последовательности (An), если ∀k ≥ 0∃N ∈ N ∀n ≥ N (ank = bk).
• Обозначения: An(x)→ B(x) или B(x) = lim

n→∞
An(x).

Замечание
Другими словами, для любого k ≥ 0 последовательность (ank)
коэффициентов при xk стабилизируется: начиная с некоторого места
все её члены становятся равными bk .
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Предел последовательности формальных степенных рядов: свойства

Утверждение 1
Если An(x)→ B(x) и An(x)→ C (x), то B(x) = C (x).
Доказательство. Рассмотрим k ≥ 0.
• По определению, найдутся такие N1,N2 ∈ N, что
∀n ≥ N1 (ank = bk) и ∀n ≥ N2 (ank = ck).
• Тогда при n = max(N1,N2) имеем bk = ank = ck .

Утверждение 2
Пусть An(x)→ B(x) и Cn(x)→ D(x). Тогда
1. (An + Cn)(x)→ (B + D)(x);
2. (AnCn)(x)→ (BD)(x).

Доказательство. Пусть k ≥ 0.
• Выберем N так, чтобы ∀i ≤ k ∀n ≥ N (ani = bi & cni = di ).

• Тогда при n ≥ N имеем ank + cnk = bk + dk и
k∑

i=0
anicn,k−i =

k∑
i=0

bidk−i .
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Дискретное нормирование в кольце K [[x ]]

Определение
Пусть A(x) =

∑
k≥0 akx

k — формальный степенной ряд.

• Назовем нормой ряда A(x) величину ν(A) def
= min{k ∈ N0 | ak 6= 0}.

• В случае A(x) = 0 положим ν(A)
def
= ∞.

Утверждение 3
Определенная выше функция ν : K [[x ]]→ Z ∪ {∞}, обладает следующими
свойствами:
1. ν(A) =∞⇐⇒ A = 0;
2. ν(AB) = ν(A) + ν(B);
3. ν(A+ B) ≥ min{ν(A), ν(B)}.

Доказательство. Свойство 1. непосредственно следует из определения.
• Пусть ν(A) = m и ν(B) = n.
• В случае, если A = 0 или B = 0, свойства 2. и 3. очевидно выполнены.
Поэтому далее мы будем считать, что m, n <∞.
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Дискретное нормирование в кольце K [[x ]]

2. Пусть (AB)(x) =
∑

k≥0 ckx
k , где ck =

∑k
i=0 aibk−i .

• Заметим, что aibk−i = 0 как при i < m, так и при i > k − n.
• Следовательно, cm+n = ambn 6= 0 и ck = 0 при k < m + n.
• А это и означает, что ν(AB) = m + n.
3. При k < min{m, n} очевидно, что ak + bk = 0.
• Следовательно, ν(A+ B) ≥ min{m, n}.
Следствие
Если в кольце K нет делителей нуля, то в K [[x ]] также нет делителей нуля.

Замечание
• Функция с такими свойствами называется дискретным нормированием
в кольце K [[x ]].
• Функция ν(A) ведет себя так же, как и степень многочлена. В некоторых
книгах её называют степенью формального степенного ряда и обозначают
deg(A). Но мы так делать не будем во избежание путаницы с обычной
степенью многочлена. Все-таки формально это разные функции.
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Дискретное нормирование и пределы в кольце K [[x ]]

Утверждение 4
Последовательность формальных степенных рядов An(x) имеет предел,
если и только если lim

i→∞
ν(Ai+1 − Ai ) =∞.

Доказательство. “⇒” Пусть An(x)→ B(x). Рассмотрим произвольное k ∈ N.
• Тогда найдется такое Nk ∈ N, что ∀n ≥ Nk ∀j ≤ k (anj = bj).
• Следовательно, при i ≥ Nk имеем ∀j ≤ k (ai+1,j − aij = 0),
то есть ν(Ai+1 − Ai ) > k .
“⇐” Пусть lim

i→∞
ν(Ai+1 − Ai ) =∞. Рассмотрим произвольное k ∈ N0.

• Тогда найдется такое Nk ∈ N, что ∀i ≥ Nk (ν(Ai+1 − Ai ) > k).
• Следовательно, при ∀i ≥ Nk (aik = aNkk).

• Тогда, обозначив bk
def
= aNkk , получим, что An(x)→

∑
k≥0 bkx

k .
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Замечание о расстояниях между формальными степенными рядами

Замечание
• Фактически, мы считаем, что два формальных степенных ряда тем ближе,
чем больше норма их разности. Другими словами, ряды тем ближе, чем
позже наступает первое различие в их коэффициентах.
• Формально это можно задать введя следующую функцию расстояния
в кольце K [[x ]]:

ρ(A,B)
def
= 2−ν(A−B).

• Тогда An(x)→ B(x) если и только если lim
n→∞

ρ(An,B) = 0.

• Можно проверить, что для заданной таким образом функции расстояния
выполнены основные свойства обычного расстояния между точками.
В частности, выполнено неравенство треугольника:
ρ(A,B) + ρ(B,C ) ≥ ρ(A,C ).
• Такая функция расстояния задает на K [[x ]] структуру метрического
пространства. Но подробно о метрических пространствах мы говорить не
будем.
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Бесконечные суммы и произведения формальных степенных рядов

Определение
• Пусть Ai (x) — последовательность формальных степенных рядов.
• Тогда обозначим

I
∑
i≥0

Ai (x)
def
= lim

n→∞

n∑
i=0

Ai (x);

I
∏
i≥0

Ai (x)
def
= lim

n→∞

n∏
i=0

Ai (x).

• Будем говорить, что бесконечная сумма или бесконечное произведение
сходится, если указанный в определении предел существует.

Замечание
• Тем самым, мы можем рассматривать формальный степенной ряд
A(x) =

∑
k≥0 akx

k как бесконечную сумму своих одночленов akx
k .

• Для простоты, говоря о бесконечных произведениях, мы далее будем
ограничиваться случаем, когда у всех множителей свободные члены равны 1.
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Сходимость бесконечных сумм и произведений

Теорема

1.
∑

i≥0 Ai (x) сходится, если и только если lim
i→∞

ν(Ai ) =∞;

2.
∏

i≥0(1+ Bi (x)), где ∀i ν(Bi ) > 0, сходится,
если и только если lim

i→∞
ν(Bi ) =∞.

Доказательство.
1. По утверждению 4 сходимость суммы равносильна тому, что

lim
n→∞

ν

(
n+1∑
i=0

Ai (x)−
n∑

i=0
Ai (x)

)
= lim

n→∞
ν(An) =∞.

2. Аналогично, сходимость произведения равносильна тому, что

lim
n→∞

ν

(
n+1∏
i=0

(1+ Bi (x))−
n∏

i=0
(1+ Bi (x))

)
=

= lim
n→∞

ν

(
n∏

i=0
(1+ Bi (x))Bn+1(x)

)
=

= lim
n→∞

(
n∑

i=0
ν(1+ Bi (x)) + ν(Bn+1(x))

)
= lim

n→∞
ν(Bn) =∞.
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Еще о композиции формальных степенных рядов
Теперь мы можем дать формальное определение композиции формальных
степенных рядов. Пусть A(x) =

∑
k≥0 akx

k и B(x) =
∑

k≥0 bkx
k —

формальные степенные ряды.

Определение
• A(B(x))

def
=
∑

k≥0 akB
k(x) — композиция рядов A и B .

• Композиция определена, если и только если указанная выше бесконечная
сумма сходится.
Поймем, при каких условиях A(B(x)) определена. Есть два случая.
1◦ Тривиальный случай: если A(x) — многочлен (т. е. начиная с

некоторого места все ai = 0). Тогда в бесконечной сумме лишь конечное
число ненулевых слагаемых. Очевидно, что тогда она сходится.

2◦ Если ν(B) > 0 (т. е. у B(x) нулевой свободный член), то
ν(akB

k(x)) = ν(ak) + kν(B(x)) ≥ kν(B(x))→ +∞ и бесконечная
сумма также сходится.

• Докажем, что в остальных случаях композиция не определена.
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Теорема
Композиция A(B(x)) определена тогда и только тогда, когда выполняется
хотя бы одно из следующих двух утверждений.
1◦ A(x) — многочлен (т. е. начиная с некоторого места все ak = 0);
2◦ ν(B) > 0.

Доказательство. “⇐”: доказано выше.
“⇒”: Пусть A(B(x)) определена и при этом ν(B) = 0.
• Тогда, ν(akBk(x)) = ν(ak) + kν(B(x)) = ν(ak)→∞.
• Но тогда начиная с некоторого места все ak = 0.

Примеры

1. Подставим в равенство 1
1−x = 1+ x + x2 + x3 + . . . ряд xn.

Получим равенство 1
1−xn = 1+ xn + x2n + x3n + . . ..

2. Введем обозначение ex
def
=
∑

k≥0
xk

k! . Тогда выражение ee
x−1 определено

как формальный степенной ряд. А выражение ex+1 — не определено!
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Производящая функция числа разбиений

Теорема∑
n≥0 p(n)x

n =
∏

k≥1
1

1−xk .
Доказательство.
•
∏

k≥1
1

1−xk = (1+ x + x2 + x3 + . . .)(1+ x2 + x4 + x6 + . . .) . . ..
• Заметим, что коэффициент при xn получается при перемножении
первых n скобок этого бесконечного произведения.
• Для того, чтобы в произведении

∏n
k=1(1+ xk + x2k + x3k + . . .) получить

слагаемое xn, нам нужно перемножить слагаемые вида x tkk из каждой
скобки (где tk ∈ N0).
• То есть коэффициент при xn равен числу решений уравнения
t1 + 2t2 + 3t3 + . . .+ ntn = n в целых неотрицательных числах,
а оно равно p(n).
• Многие утверждения о количествах разбиений можно доказать при
помощи производящих функций.
• В качестве примера, рассмотрим одну из задач из серии про разбиения.
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Производящая функция числа разбиений

Утверждение
Количество представлений натурального числа n в виде суммы различных
натуральных слагаемых равно количеству его представлений в виде суммы
нечетных, не обязательно различных слагаемых.
Доказательство. Аналогично доказанному выше можно получить, что
• производящая функция для числа разбиений на нечетные слагаемые
равна

∏
k/
...2

1
1−xk ;

• производящая функция для числа разбиений на различные слагаемые
равна

∏
k≥1(1+ xk).

• Докажем, что они равны. Для этого заметим, что 1
1−xk =

∏
`≥0(1+ xk2`).

I Действительно, докажем, что (1− xk)
∏m−1
`=0 (1+ xk2`) = 1− xk2m .

I m = 1: (1− xk)(1+ xk) = 1− x2k ;

I m→ m + 1: (1− xk)
m∏
`=0

(1+ xk2`) = (1− xk2m)(1+ xk2m) = 1− xk2m+1
.

• Перемножив полученные равенства по всем k /
... 2, получим требуемое.
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Формальная производная

Определение
• Пусть A(x) =

∑
k≥0 akx

k — формальный степенной ряд.
• Формальной производной ряда A(x) называется формальный степенной
ряд

A′(x)
def
=
∑
k≥1

kakx
k−1.

• Наша цель состоит в том, чтобы проверить, что формальная производная
обладает теми же свойствами, что и обычная производная функции.
• Для этого мы дадим эквивалентную переформулировку определения
формальной производной, сделав его более похожим на классическое
определение производной.
• Разложим выражение A(x + t) по степеням t. Оказывается, что
коэффициент при t1 равен как раз A′(x).

I Здесь мы рассматриваем A(x + t) как формальный степенной ряд от
двух переменных, x и t.
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Формальные степенные ряды от двух переменных
• Пусть K — коммутативное кольцо с единицей.
• Мы доказывали, что тогда K [[x ]] — также коммутативное кольцо
с единицей.

I И если в кольце K нет делителей нуля, то в K [[x ]] их также нет.
• Следовательно, мы можем рассмотреть кольцо формальных степенных
рядов с коэффициентами из K [[x ]].

Определение
• Кольцо K [[x , t]]

def
=
(
K [[x ]]

)
[[t]] называется кольцом формальных

степенных рядов от двух переменных.

Замечание
• Формально, элемент кольца K [[x , t]] — это “последовательность
последовательностей” элементов кольца K , т. е. бесконечная двумерная
матрица F = (fk`)

∞
k,`=0, где fk` ∈ K .

• Эти элементы записывают как формальные суммы вида
F (x , t) =

∑
k,`≥0 fk`x

kt`.
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Формальная производная и ряды от двух переменных
• Пусть F (x , t) =

∑
k,`≥0 fk`x

kt` и G (x , t) =
∑

k,`≥0 gk`x
kt`. Тогда легко

видеть, что их сумма и произведение задаются следующими формулами:
◦ (F + G )(x , t) =

∑
k,`≥0(fk` + gk`)x

kt`;

◦ (F · G )(x , t) =
∑

k,`≥0 hk`x
kt`, где hk` =

∑k
i=0
∑`

j=0 fijgk−i ,`−j .
• По доказанному выше, K [[x , t]] — коммутативное кольцо с единицей.
• Более того, если в кольце K нет делителей нуля, то в кольце K [[x , t]]
также нет делителей нуля.
• Аналогично можно определить K [[x1, . . . , xn]] — кольцо формальных
степенных рядов от n переменных.

Лемма
A(x + t) = A(x) + A′(x)t + U(x , t)t2, где U(x , t) ∈ K [[x , t]].
Доказательство. Пусть A(x) =

∑
k≥0 akx

k . Тогда
A(x + t) =

∑
k≥0 ak(x + t)k =

∑
k≥0 ak

(
xk + kxk−1t +

∑k
i=2 C

i
kx

k−i t i
)
=

=
∑

k≥0 akx
k +

(∑
k≥1 kakx

k−1)t + (∑k≥2
∑k

i=2 akC
i
kx

k−i t i−2)t2.
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Свойства формальной производной

Следствие

A′(x) =
A(x + t)− A(x)

t

∣∣∣∣
t=0

.

Теорема

1. (A+ B)′(x) = A′(x) + B ′(x);
2. (AB)′(x) = A′(x)B(x) + A(x)B ′(x);

3.
(

A(x)
B(x)

)′
= A′(x)B(x)−A(x)B′(x)

B2(x)
;

4. (A(B(x)))′ = A′(B(x))B ′(x).

Доказательство. Пусть
A(x + t) = A(x) + A′(x)t + U(x , t)t2 и B(x + t) = B(x) + B ′(x)t + V (x , t)t2.
Тогда
1. (A+ B)(x + t) = (A+ B)(x) + (A′(x) + B ′(x))t + (U(x , t) + V (x , t))t2;
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Свойства формальной производной

2. (AB)(x + t) = (A(x) + A′(x)t + U(x , t)t2)(B(x) + B ′(x)t + V (x , t)t2) =
= (AB)(x) + (A′(x)B(x) + A(x)B ′(x))t +W (x , t)t2;

3. A(x) =
(

A(x)
B(x)

)
B(x)⇒ A′(x) =

(
A(x)
B(x)

)′
B(x) +

(
A(x)
B(x)

)
B ′(x)

⇒
(

A(x)
B(x)

)′
= A′(x)B(x)−A(x)B′(x)

B2(x)
.

4. Пусть T (x , t)
def
= B(x + t)− B(x) = t(B ′(x) + V (x , t)t).

• Отметим, что ряды B(x) и T (x , t) имеют нулевые свободные члены.
Так что их можно подставить в выражение для A(x + t) вместо x и t
соответственно.
• Тогда
A(B(x + t)) = A(B(x) + T (x , t)) =

= A(B(x)) + A′(B(x))T (x , t) + U(B(x),T (x , t))T 2(x , t) =
= A(B(x)) + A′(B(x))B ′(x)t +
+ (A′(B(x))V (x , t) + U(B(x),T (x , t))(B ′(x) + V (x , t)t)2)t2.
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Формальная производная: примеры
Здесь и далее мы будем рассматривать кольцо R[[x ]].
1. Очевидно, что A′(x) = 0⇐⇒ A(x) = a0 ∈ R.

• Более того, если A′(x) = B(x) =
∑

k≥0 bkx
k ,

то A(x) = a0 +
∑

k≥0
bk
k+1x

k+1.

2. Как и раньше, пусть ex = exp(x)
def
=
∑

k≥0
xk

k! . Тогда exp′(x) = exp(x).
• Более того, если A′(x) = A(x), то A(x) = a0 exp(x).
• Действительно, если A(x) =

∑
k≥0 akx

k , то приравняв коэффициенты
при xk−1 в равенстве A′(x) = A(x) получим ak−1 = kak , откуда ak = a0

k! .

3. Введем также обозначение ln(1+ x)
def
=
∑

k≥1
(−1)k−1

k xk .
Тогда ln(1+ x)′ =

∑
k≥1(−1)k−1xk−1 = 1

1+x .
4. Пусть B(x) — формальный степенной ряд, такой, что B(0) = 1.

Тогда мы можем определить логарифм этого ряда как композицию
двух формальных степенных рядов: lnB(x) def

= ln(1+ (B(x)− 1)).

• Заметим, что тогда (lnB(x))′ = B′(x)
B(x) .
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Логарифмическая производная и её свойства

Определение
Формальный степенной ряд B′(x)

B(x) называется логарифмической производной
ряда B(x) (где B(0) = 1).

Лемма
Пусть A(x),B(x) ∈ R[[x ]] таковы, что A(0) = B(0) = 1 и A′(x)

A(x) = B′(x)
B(x) .

Тогда A(x) = B(x).
Доказательство.

0 = A′(x)
A(x) −

B′(x)
B(x) = A′(x)B(x)−A(x)B′(x)

A(x)B(x) = A′(x)B(x)−A(x)B′(x)
B2(x)

B(x)
A(x) =

(
A(x)
B(x)

)′
· B(x)
A(x) .

• Следовательно,
(

A(x)
B(x)

)′
= 0, то есть A(x)

B(x) — константа.

• Поскольку A(0) = B(0) = 1, получаем, что A(x) = B(x).

Следствие
Если lnA(x) = lnB(x), то A(x) = B(x).
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Логарифмирование и экспоненцирование степенных рядов

Теорема
Пусть A(x),B(x) ∈ R[[x ]] таковы, что A(0) = 0,B(0) = 1 и B′(x)

B(x) = A′(x).
Тогда B(x) = exp(A(x)).
Доказательство.

•
(exp(A(x)))′

exp(A(x))
=

exp(A(x))A′(x)

exp(A(x))
= A′(x) =

B ′(x)

B(x)
.

• Тогда по лемме B(x) = exp(A(x)).

Замечание
• Мы видели, что если A(0) = 0, то можно рассмотреть
экспоненту exp(A(x)). При этом, exp(A(0)) = 1.
• А если B(0) = 1, то можно рассмотреть логарифм ln(B(x)).
И тогда ln(B(0)) = 0.
• Как и для чисел, эти две операции оказываются взаимно обратными.
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Логарифмирование и экспоненцирование степенных рядов

Теорема
Пусть A(x),B(x) ∈ R[[x ]] таковы, что A(0) = 0 и B(0) = 1. Тогда
1. ln(exp(A(x))) = A(x);
2. exp(ln(B(x))) = B(x).

Доказательство.

1. (ln(exp(A(x))))′ =
(exp(A(x)))′

exp(A(x))
=

exp(A(x))A′(x)

exp(A(x))
= A′(x).

2.
(exp(ln(B(x))))′

exp(ln(B(x))
=

exp(ln(B(x)))(ln(B(x)))′

exp(ln(B(x))
=

B ′(x)

B(x)
.

• Другие привычные нам свойства экспоненты и логарифма здесь также
выполнены.
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Логарифмирование и экспоненцирование степенных рядов

Теорема
Пусть A(x),B(x) ∈ R[[x ]] таковы, что A(0) = B(0) = 1. Тогда
ln(A(x)B(x)) = lnA(x) + lnB(x).
Доказательство.

(ln(A(x)B(x)))′ =
(A(x)B(x))′

A(x)B(x)
=

A′(x)B(x) + A(x)B ′(x)

A(x)B(x)
=

=
A′(x)

A(x)
+

B ′(x)

B(x)
= (lnA(x) + lnB(x))′.

Следствие
Пусть A(x),B(x) ∈ R[[x ]] таковы, что A(0) = B(0) = 0. Тогда
exp(A(x) + B(x)) = expA(x) expB(x).
Доказательство.
ln(exp(A(x) + B(x))) = A(x) + B(x) =

= ln(expA(x)) + ln(expB(x)) = ln(expA(x) expB(x)).



Дискретная
математика.

Глава 7. Метод
производящих

функций.

А. В. Пастор

Экспоненциальные производящие функции
• Пусть (a0, a1, a2, . . .) — произвольная последовательность чисел.
• Экспоненциальной производящей функцией последовательности (an)
называется выражение

A(x)
def
=
∑
k≥0

ak
xk

k!
.

Пример
• Найдем экспоненциальную производящую функцию
последовательности an, заданной следующими соотношениями:
a0 = a1 = 1 и an = an−1 + (n − 1)an−2 при n ≥ 2.

• Пусть A(x) =
∑

k≥0 ak
xk

k! .

• Тогда A′(x) =
∑

k≥1 ak
xk−1

(k−1)! = 1+
∑

k≥2(ak−1 + (k − 1)ak−2)
xk−1

(k−1)! =

=
∑

k≥1 ak−1
xk−1

(k−1)! +
∑

k≥2 ak−2
xk−1

(k−2)! = A(x) + xA(x).

• Следовательно, A′(x)
A(x) = 1+ x = (x + x2

2 )′.

• Таким образом, A(x) = exp(x + x2

2 ).
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Экспоненциальные производящие функции для чисел Стирлинга

Теорема∑
n≥k

S(n, k)
xn

n!
=

1
k!

(ex − 1)k , при всех k ≥ 0.

Доказательство. Индукция по k .
k = 0:

∑
n≥0 S(n, 0)

xn

n! = 1 = 1
0!(e

x − 1)0.
k − 1→ k : Пусть Fk(x) =

∑
n≥k S(n, k)

xn

n! .

• Fk(x) =
∑

n≥k(kS(n − 1, k) + S(n − 1, k − 1)) x
n

n! =

= k
∑

n≥k S(n − 1, k) x
n

n! +
∑

n≥k S(n − 1, k − 1) x
n

n! .

• F ′k(x) = k
∑

n≥k S(n − 1, k) xn−1

(n−1)! +
∑

n≥k S(n − 1, k − 1) xn−1

(n−1)! =

= kFk(x) + Fk−1(x).
• По индукционному предположению имеем Fk−1(x) =

1
(k−1)!(e

x − 1)k−1,
следовательно,

F ′k(x) = kFk(x) +
1

(k − 1)!
(ex − 1)k−1. (1)

• Также мы знаем, что Fk(0) = 0. (2)
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Экспоненциальные производящие функции чисел Стирлинга и Белла
• Заметим, что решение Fk(x) =

1
k!(e

x − 1)k подходит под оба условия:( 1
k!(e

x − 1)k
)′
= 1

(k−1)!(e
x − 1)k−1ex = k 1

k!(e
x − 1)k + 1

(k−1)!(e
x − 1)k−1

и условие (2) также, очевидно, выполнено.
• Докажем, что Fk(x) — единственный формальный степенной ряд,
удовлетворяющий этим условиям.

• Пусть Gk(x) удовлетворяет условиям (1) и (2). Hk(x)
def
= Gk(x)− Fk(x).

• По условию (1) имеем H ′k(x) = G ′k(x)− F ′k(x) = kGk(x)− kFk(x) = kHk(x).
• С другой стороны, по условию (2) имеем Hk(0) = Gk(0)− Fk(0) = 0.
• Но тогда Hk(x) = 0 (в противном случае, ν(H ′k) = ν(Hk)− 1 6= ν(kHk(x))).
• Таким образом, Gk(x) = Fk(x).

Следствие∑
n≥0 Bn

xn

n! = ee
x−1.

Доказательство.
∑

n≥0 Bn
xn

n! =
∑

n≥0
∑n

k=0 S(n, k)
xn

n! =

=
∑∞

k=0
∑

n≥k S(n, k)
xn

n! =
∑∞

k=0
1
k!(e

x − 1)k = ee
x−1.
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Формальное возведение в степень

Определение
Пусть α ∈ R. Тогда

• (1+ x)α
def
= exp(α ln(1+ x));

• если A(x) ∈ R[[x ]] и A(0) = 1, то (A(x))α
def
= exp(α ln(A(x))).

Докажем, что определенная выше операция возведения в степень
формального степенного ряда обладает всеми привычными свойствами
возведения в степень.

Утверждение
Пусть α, β ∈ R и A,B ∈ R[[x ]], где A(0) = B(0) = 1. Тогда
1. (A(x))α(A(x))β = (A(x))α+β ;
2. ((A(x))α)β = (A(x))αβ ;
3. (A(x))α(B(x))α = (A(x)B(x))α.
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Формальное возведение в степень
Доказательство.
1. (A(x))α(A(x))β = exp(α ln(A(x))) exp(β ln(A(x))) =

= exp(α ln(A(x)) + β ln(A(x)) =

= exp((α+ β) ln(A(x))) =

= (A(x))α+β .
2. ((A(x))α)β = exp(β ln(A(x)α)) =

= exp(β ln(exp(α ln(A(x))))) =

= exp(β(α ln(A(x)))) =

= (A(x))αβ .
3. (A(x))α(B(x))α = exp(α ln(A(x))) exp(α ln(B(x))) =

= exp(α ln(A(x)) + α ln(b(x))) =

= exp(α(ln(A(x)) + ln(B(x))) =

= exp(α ln(A(x)B(x))) =

= (A(x)B(x))α.
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Формальное возведение в степень

Замечание
Отметим еще несколько свойств, характерных для обычного
возведения в степень. Пусть A ∈ R[[x ]] и A(0) = 1. Тогда
• A(x)0 = exp(0 · lnA(x)) = exp(0) = 1;
• A(x)1 = exp(1 · lnA(x)) = exp(lnA(x)) = A(x);
• если α ∈ R, то A(x)α+1 = A(x)αA(x)1 = A(x)α · A(x),

I в частности, при n ∈ N по индукции легко показать,
что A(x)n — это действительно n-я степень ряда A(x);

• A(x)−1 · A(x) = A(x)0 = 1,
I то есть A(x)−1 — это действительно ряд, обратный к A(x);

• (A(x)
1
n )n = A(x)

1
n
·n = A(x)1 = A(x),

I то есть мы можем считать, что n
√

A(x)
def
= A(x)

1
n .
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Биномиальный ряд

Теорема
Пусть α ∈ R. Тогда (1+ x)α =

∑
k≥0

(
α
k

)
xk , где

(
α
k

) def
= αk

k! = α(α−1)...(α−k+1)
k! .

Доказательство. Пусть (1+ x)α =
∑

k≥0 akx
k . Мы знаем, что a0 = 1.

• Заметим, что ((1+x)α)′

(1+x)α = (ln((1+ x)α))′ = (α ln(1+ x))′ = α
1+x .

• Тогда (1+ x)((1+ x)α)′ = α(1+ x)α. При этом, α(1+ x)α =
∑

k≥0 αakx
k

и (1+ x)((1+ x)α)′ = (1+ x)
∑

k≥1 kakx
k−1 =

∑
k≥0((k + 1)ak+1 + kak)x

k .

• Приравнивая коэффициенты при xk получим, что αak = (k + 1)ak+1 + kak
при всех k ≥ 0, откуда ak+1 = α−k

k+1 · ak .
• Тогда, учитывая, что a0 = 1, по индукции получаем, что
ak = α(α−1)...(α−k+1)

k! .

Замечание
• Доказанная выше формула для (1+ x)α называется биномиальным рядом.
• В частности, эта теорема означает, что равенство

√
1− 4x =

∑
k≥0

(1/2
k

)
(−4x)k ,

которое мы использовали для чисел Каталана, имеет смысл и с точки зрения
формальных степенных рядов.
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Многомерные производящая функции

• Если комбинаторная величина задается несколькими целыми
неотрицательными параметрами (индексами), то для её задания удобно
использовать производящую функцию нескольких переменных или
многомерную производящую функцию.
• Пусть a : Nn

0 → R. Многомерной производящей функцией величины
a(i1, . . . , in) называется выражение

A(x1, . . . , xn)
def
=

∑
i1,...,in≥0

a(i1, . . . , in)x
i1
1 . . . x

in
n .

• Многомерную производящую функцию можно рассматривать
как формальный степенной ряд от нескольких переменных
(т. е. как элемент кольца R[[x1, . . . , xn]]).
• Также можно говорить о сходимости такого ряда в некоторой окрестности
нуля. Тогда получится функция от n переменных, действующая из
некоторого подмножества Rn в R.
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Многомерные производящая функции: примеры
1. Двумерная производящая функция для биномиальных коэффициентов∑

n,k≥0 C
k
n x

kyn =
∑

n≥0
(∑n

k=0 C
k
n x

k
)
yn =

∑
n≥0(1+ x)nyn = 1

1−y−xy .
2. Симметричная форма записи биномиальных коэффициентов∑

m,n≥0
Cm
m+nx

myn =
∑
k≥0

∑
m+n=k

Cm
m+nx

myn =
∑
k≥0

(x + y)k = 1
1−x−y .

3. Разбиения целочисленных векторов
• Пусть N(a, b), где a, b ∈ N0, — число разбиений вектора (a, b) ∈ N2

0
на различные векторы, координаты которых отличаются на 1.
• Например, (6, 4) = (1, 0) + (5, 4);

(6, 4) = (2, 1) + (4, 3);
(6, 4) = (0, 1) + (1, 0) + (2, 1) + (3, 2).

• Следовательно, N(6, 4) = 3.
• Тогда

∑
a,b≥0 N(a, b)uavb =

∏∞
k=1(1+ uk−1vk)(1+ ukvk−1).

Доказательство. N(a, b) — число способов представить uavb

в виде произведения различных мономов вида uk−1vk и ukvk−1.
А это и есть коэффициент при uavb в правой части.
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Тождество Гаусса-Якоби

Теорема (тождество Гаусса-Якоби)

∞∏
k=1

(1+ uk−1vk)(1+ ukvk−1)(1− ukvk) =
∞∑

q=−∞
u

q(q+1)
2 v

q(q−1)
2 .

• Ниже мы дадим комбинаторное доказательство тождества Гаусса-Якоби.
• Для этого изучим свойства чисел N(a, b).
• Каждое разбиение вектора (a, b) будем записывать в следующем виде:

(a, b) = (k1 + 1, k1) + . . .+ (ks + 1, ks) + (`1, `1 + 1) + . . .+ (`t , `t + 1),

где k1 > . . . > ks ≥ 0 и `1 > . . . > `t ≥ 0.
• Такое разбиение будем обозначать через (k1, . . . , ks |`1, . . . , `t).
• Например, разбиения вектора (6, 4) обозначим (4, 0|), (3, 1|), (2, 1, 0|0).
• Докажем несколько лемм.
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Свойства разбиений целочисленных векторов

Лемма 1
N(a, b) > 0⇐⇒ a+ b ≥ (a− b)2.
Доказательство. Пусть, не умаляя общности, a ≥ b.
“⇒”: Рассмотрим разбиение (k1, . . . , ks |`1, . . . , `t) вектора (a, b).
• Очевидно, что a− b = s − t ≥ 0.
• a+ b = (2k1 + 1) + . . .+ (2ks + 1) + (2`1 + 1) + . . .+ (2`t + 1) ≥

≥ 1+ 3+ . . .+ (2s − 1) = s2 ≥ (s − t)2 = (a− b)2.
“⇐”: Пусть q = a− b.
• Если q = 0, то (a, a) = (a, a− 1) + (0, 1). Т. е. (a− 1|0) — разбиение (a, b).
• Если q > 0, то рассмотрим разбиение (q − 1, q − 2, . . . , 0|).

I Это разбиение вектора (a′, b′), где a′ − b′ = a− b ≥ 0.
I Заметим, что a′ + b′ = 1+ 3+ . . .+ (2q − 1) = q2 ≤ a+ b.
I Тогда a = a′ +m и b = b′ +m, где m ≥ 0.
I Следовательно, (q − 1+m, q − 2, . . . , 0|) — разбиение (a, b).
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Свойства разбиений целочисленных векторов
• Далее, мы будем рассматривать только векторы, для которых N(a, b) > 0.
• Очевидно, что число a+ b − (a− b)2 всегда четно.

• Введем обозначения m = a+b−(a−b)2
2 и q = a− b. Тогда m ∈ N0 и q ∈ Z.

• Заметим, что числа a и b однозначно выражаются через m и q.
Действительно

I a = (a+b)+(a−b)
2 = 2m+q2+q

2 = m + q(q+1)
2 ;

I b = (a+b)−(a−b)
2 = 2m+q2−q

2 = m + q(q−1)
2 .

• Введем обозначение

t(m, q)
def
= N

(
m +

q(q + 1)
2

,m +
q(q − 1)

2

)
.

Лемма 2
При всех m ∈ N0 и q ∈ Z выполнено равенство t(m, q) = t(m, 0).
Доказательство. Достаточно доказать, что при q > 0 выполнено равенство
t(m, q) = t(m, q − 1) (при q < 0 все симметрично).
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Свойства разбиений целочисленных векторов: зависимость только от m

• Пусть T (m, q) — множество всех разбиений (m + q(q+1)
2 ,m + q(q−1)

2 ).
• Построим биекцию между T (m, q) и T (m, q − 1):

ϕ(k1, . . . , ks |`1, . . . , `t)
def
=

{
(k1 − 1, . . . , ks − 1|`1 + 1, . . . , `t + 1, 0), ks > 0
(k1 − 1, . . . , ks−1 − 1|`1 + 1, . . . , `t + 1), ks = 0.

• Обозначим через a′, b′, s ′, t ′,m′, q′ характеристики получившегося
разбиения, аналогичные a, b, s, t,m и q соответственно.
• Заметим, что в каждом из случаев s ′ − t ′ = s − t − 1, т. е. q′ = q − 1.
• Также легко видеть, что во всех случаях a′ + b′ = (a+ b)− 2s + 2t + 1,
откуда m′ = a′+b′−(a′−b′)2

2 = a+b−2q+1−(q−1)2
2 = a+b−q2

2 = m.
• Наконец, ϕ — биекция, поскольку можно построить обратное отображение:

ψ(k1, . . . , ks |`1, . . . , `t)
def
=

{
(k1 + 1, . . . , ks + 1, 0|`1 − 1, . . . , `t − 1), `t > 0
(k1 + 1, . . . , ks + 1|`1 − 1, . . . , `t−1 − 1), `t = 0.
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Связь разбиений чисел и векторов

Лемма 3
При всех m ∈ N0 выполнено равенство t(m, 0) = p(m).
Доказательство. Нужно доказать, что число разбиений вектора (m,m) равно
числу разбиений m.
• Построим биекцию между этими разбиениями.
• Рассмотрим произвольную диаграмму Юнга из m клеток.
• Проведем в этой диаграмме диагональ из левого нижнего угла
направо-вверх. Пусть в ней s клеток.

I Пусть ki — количество клеток в i-й строке, находящихся правее
выделенной диагонали.

I Аналогично, `j — количество клеток в j-м столбце, находящихся выше
выделенной диагонали.

I Тогда (k1, . . . , ks |`1, . . . , `t) — разбиение вектора (m,m).
• К этому преобразованию легко построить обратное, поэтому оно —
биекция.
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Доказательство тождества Гаусса-Якоби

Доказательство.∏
k≥1

(1+ uk−1vk)(1+ ukvk−1) =
∑

a,b≥0
N(a, b)uavb =

=
∞∑

q=−∞

∞∑
m=0

t(m, q)um+ q(q+1)
2 vm+ q(q−1)

2 =

=
∞∑

q=−∞

( ∑
m≥0

p(m)umvm
)
u

q(q+1)
2 v

q(q−1)
2 =

=
∞∏
k=1

1
1−ukvk

∞∑
q=−∞

u
q(q+1)

2 v
q(q−1)

2 .

Домножив обе части равенства на
∞∏
k=1

(1− ukvk) получим

∞∏
k=1

(1+ uk−1vk)(1+ ukvk−1)(1− ukvk) =
∞∑

q=−∞
u

q(q+1)
2 v

q(q−1)
2 .



Дискретная
математика.

Глава 7. Метод
производящих

функций.

А. В. Пастор

Доказательство пентагональной формулы Эйлера через
тождество Гаусса-Якоби

Следствие (пентагональная формула Эйлера)∏
k≥1

(1− xk) = 1+
∑
k≥1

(−1)k
(
x

k(3k−1)
2 + x

k(3k+1)
2
)
.

Доказательство.
• Подставим в тождество Гаусса-Якоби u = −t, v = −t2.
• В левой части получим

∏
k≥1

(1− t3k−2)(1− t3k−1)(1− t3k).

• В правой части:
∞∑

k=−∞
(−1)

k(k+1)
2 + k(k−1)

2 tk(k+1)/2tk(k−1) =

=
∞∑

k=−∞
(−1)ktk(3k−1)/2 = 1+

∑
k≥1

(−1)k(x
k(3k−1)

2 + x
k(3k+1)

2 ).
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Рекуррентная формула для числа разбиений

Теорема

p(n) =
∑
k≥1

(−1)k+1
(
p

(
n − k(3k−1)

2

)
+ p

(
n − k(3k+1)

2

))
.

Замечание
• Здесь мы считаем, что p(m) = 0 при m < 0. То есть рассматриваются
только те слагаемые, где p берется от неотрицательных чисел.
• Если развернуть эту формулу, то получится
p(n) = p(n − 1) + p(n − 2)− p(n − 5)− p(n − 7) + p(n − 12) + p(n − 15)− . . ..
Доказательство. Заметим, что

1 =
∏
k≥1

1
1−xk

∏
k≥1

(1− xk) =

(∑
k≥0

p(k)xk
)(

1+
∑
k≥1

(−1)k
(
x

k(3k−1)
2 + x

k(3k+1)
2
))

.

• Раскрыв скобки в правой части и рассмотрев коэффициент при xn

получим:

0 = p(n) +
∑
k≥1

(−1)k
(
p

(
n − k(3k−1)

2

)
+ p

(
n − k(3k+1)

2

))
.


