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Цепи и антицепи
• Напомним, что частично упорядоченным множеством называется
упорядоченная пара (X ,�), где X — множество и � — отношение
частичного порядка на X .
• Для определенности будем считать, что � — отношение строгого
частичного порядка, то есть оно иррефлексивно, антисимметрично
и транзитивно.

Определение
Пусть (M,�) — конечное частично упорядоченное множество.
• Цепью в M называется линейно упорядоченное подмножество X ⊂ M

I т. е. элементы X образуют монотонную последовательность

x1 � x2 � . . . � xm.

• Антицепью в M называется подмножество Y ⊂ M, любые два различных
элемента которого несравнимы

I т. е. такие y1, y2, . . . , yn, что yi 6< yj при i 6= j .



Дискретная
математика.

Глава 6. Цепи и
антицепи.

А. В. Пастор

Цепи и антицепи с точки зрения орграфов

Замечание
• Пусть (M,�) — конечное частично упорядоченное множество.
• Построим соответствующий ему орграф DM следующим образом:

I V (DM) = M;
I A(DM) = {xy | x � y}.

• Заметим, что тогда
I DM — орграф без циклов;
I цепь в M — это простой ориентированный путь в DM ;
I антицепь в M — это независимое множество в DM .

• Обратно, любой орграф D без циклов задает отношение частичного
порядка на множестве своих вершин.

I Для этого нужно построить транзитивное замыкание орграфа D, то есть провести
стрелки, соединяющие начало любого простого пути в D с его концом.

Далее, нас будут интересовать разбиения M на наименьшее возможное
число цепей и на наименьшее возможное число антицепей.
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Теорема Мирского

Теорема (Мирский, 1971)
Длина максимальной цепи в M равна минимальному количеству антицепей,
на которые разбивается M.
Доказательство.
• Пусть m — длина максимальной цепи в M;
• k — минимальное число антицепей, на которые разбивается M.
• Неравенство k ≥ m тривиально, поскольку цепь и антицепь могут иметь
не более одного общего элемента.
• Докажем, что k ≤ m. Для этого нужно построить разбиение множества M
на m антицепей.

I Пусть `(x) — длина максимальной цепи с началом в x .

I Для каждого i ∈ [1..m] введем обозначение Yi
def
= {x ∈ M | `(x) = i}.

I Легко видеть, что Y1, . . . ,Ym — антицепи в M, причем каждый
элемент M принадлежит ровно одной из этих антицепей.

I Следовательно, Y1, . . . ,Ym — разбиение M на m антицепей.
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Теорема Мирского и раскраски графов

Замечание
• Наряду с орграфом DM , можно также рассмотреть соответствующий
неориентированный граф GM

def
= DM .

• Заметим, что тогда

I цепи в M соответствуют кликам в графе GM ;

I антицепи в M соответствуют независимым множествам в GM .

• Тогда длина максимальной цепи в M равна ω(GM);
• минимальное число антицепей, на которые разбивается M, равно χ(GM).
• То есть теорема Мирского утверждает, что χ(GM) = ω(GM).
• Легко видеть, что аналогичное равенство верно и для любого индуцированного
подграфа GM .

Определение
Граф G называется совершенным, если для любого его индуцированного
подграфа H выполнено равенство χ(H) = ω(H).
• То есть из теоремы Мирского следует, что граф GM — совершенный.
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Теорема Дилуорса

Теорема (Дилуорс, 1950)
Размер максимальной антицепи в M равен минимальному количеству цепей,
на которые разбивается M.

Замечание
Эта теорема уже была доказана в курсе теории графов, как следствие
теоремы Галлаи-Мильграма. Здесь мы приведем другое доказательство
теоремы Дилуорса.

Доказательство. Пусть n — размер максимальной антицепи в M;
k — минимальное число цепей, на которые разбивается M.
• Как и в предыдущей теореме, неравенство k ≥ n тривиально, поскольку
цепь и антицепь могут иметь не более одного общего элемента.
• Докажем, что k ≤ n. Для этого нужно построить разбиение множества M
на n цепей.
• Пусть M = {u1, u2, . . . , up} и D = DM — соответствующий орграф.



Дискретная
математика.

Глава 6. Цепи и
антицепи.

А. В. Пастор

Доказательство теоремы Дилуорса
• “Удвоим” орграф D. Т. е. построим следующий двудольный граф H:

I каждой вершине ui ∈ M ставим в соответствие пару вершин ai , bi ;
I пусть A = {a1, . . . , ap}, B = {b1, . . . , bp}, V (H) = A ∪ B ;
I если в D есть стрелка uiuj , то проводим в H ребро aibj .

• Можно считать, что bi — это “вход” в вершину ui , а ai — “выход”.
• Докажем, что β(H) ≥ p − n.

I Действительно, пусть W — вершинное покрытие в H.
I Рассмотрим подмножество W ′ ⊂ M, состоящее из элементов,

соответствующих вершинам из W .
I Тогда W ′ — вершинное покрытие в D.
I Следовательно, M \W ′ — независимое множество, т. е. антицепь в M.

• По теореме Кёнига α′(H) = β(H) ≥ p − n.
• Тогда в G есть паросочетание S , где |S | ≥ p − n.
• Пусть F — множество стрелок D, соответствующих ребрам из S .
• Рассмотрим подграф D ′ = (M,F ) орграфа D.
• В нем p вершин и не менее p − n стрелок.
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Завершение доказательства теоремы Дилуорса
• Все компоненты слабой связности D ′ — простые ориентированные пути.

I Компонента не может быть циклом, т. к. в D циклов нет.

• Эти пути являются цепями в M и задают разбиение M на цепи.
• Путей не более n, т. к. если в пути ` стрелок, то в нем `+ 1 вершина.

Замечание
Мы вывели теорему Дилуорса из теоремы Кёнига. Можно сделать и
наоборот. Давайте выведем теорему Кёнига из теоремы Дилуорса.
• Пусть H = (V1,V2,E ) — двудольный граф.
• Обозначим через D ориентацию графа H, в которой все стрелки
ориентированны из V1 в V2.
• Орграф D задает отношение частичного порядка на множестве
V = V1 ∪ V2.
• Очевидно, что любая цепь в получившемся частично упорядоченном
множестве состоит из не более, чем двух вершин. Более того, цепи из двух
элементов — это стрелки орграфа D.
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О связи теорем Дилуорса и Кёнига

• Таким образом, любое разбиение V на непересекающиеся цепи состоит из
нескольких не имеющих общих концов стрелок (эти стрелки задают
некоторое паросочетание в H) и отдельных вершин.
• Следовательно, минимальное количество цепей, на которые можно
разбить V , равно v(G )− α′(G ).
• С другой стороны, подмножество W ⊂ V является антицепью если и
только если W является независимым множеством в графе H.
• Таким образом, размер максимальной антицепи равен
α(H) = v(H)− β(H).
• Тогда по теореме Дилуорса v(H)− α′(H) = v(H)− β(H),
откуда α′(H) = β(H).
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Применение теоремы Дилуорса

Теорема (Эрдёш-Секереш)
Из любой последовательности различных вещественных чисел длины
mn+ 1 можно выбрать либо возрастающую подпоследовательность из m+ 1
числа, либо убывающую подпоследовательность из n + 1 числа.
Доказательство.
• Пусть L = (x1, x2, . . . , xmn+1) — последовательность из условия.
• Рассмотрим множество X = {x1, x2, . . . , xmn+1} и введем на нем
следующее отношение порядка:

I a � b, если и только если a > b и число a стоит левее, чем b.
• Тогда любая убывающая подпоследовательность в L является цепью,
а любая возрастающая подпоследовательность — антицептю.
• Предположим, что возрастающей подпоследовательности из m + 1 числа
в L нет. Тогда размер максимальной антицепи не более m.
• По теореме Дилуорса, X можно разбить на не более, чем m цепей. Одна
из них будет иметь длину хотя бы n + 1 и задаст искомую убывающую
подпоследовательность.
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Системы подмножеств и симметричные цепи

Определение
• Пусть X — конечное множество, |X | = n и M = P(X ).
• Зададим на M отношение частичного порядка A ⊂ B .
• Цепь C = {A1,A2, . . . ,Ak} в (M,⊂) называется симметричной, если
выполняются следующие два условия:
1. |A1|+ |Ak | = n;
2. ∀i ∈ [1..k − 1] (|Ai+1| = |Ai |+ 1).

Замечание
• В частности, тогда |Ai |+ |Ak+1−i | = n при всех i ∈ [1..k].
• Элементы множества M можно записывать как последовательности нулей
и единиц (т.е. элементы из {0, 1}n).
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Системы подмножеств и симметричные цепи
• Пусть A = (a1, . . . , an) и B = (b1, . . . , bn) — элементы {0, 1}n.

I Тогда A ≺ B , если ∀i (ai ≤ bi ) и хотя бы одно из неравенств строгое.
I Симметричная цепь в {0, 1}n — это такая последовательность

упорядоченных наборов нулей и единиц, в которой каждый следующий
набор получается из предыдущего заменой одного нуля на единицу и
суммарное число единиц в первом и последнем наборе равно n.

Теорема
Множество M можно разбить на C

[ n2 ]
n симметричных цепей.

Доказательство. Индукция по n.
База: при n = 1 утверждение очевидно.
Переход (n − 1→ n): пусть X = {x1, . . . , xn−1, xn}.
• Рассмотрим множество X ′ = {x1, . . . , xn−1}. По индукционному
предположению, P(X ′) можно разбить на симметричные цепи.
• Пусть C = {A1, . . . ,Ak−1,Ak}, где A1 ⊂ . . . ⊂ Ak−1 ⊂ Ak — одна из цепей
в разбиении P(X ′) на симметричные цепи.
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Системы подмножеств и симметричные цепи

• Тогда рассмотрим следующие цепи в P(X ):
I C ′i : A1 ⊂ . . . ⊂ Ak−1 ⊂ Ak ⊂ Ak ∪ {xn};
I C ′′i : A1 ∪ {xn} ⊂ . . . ⊂ Ak−1 ∪ {xn} (в случае k > 1).

• Легко видеть, что цепи C ′i и C ′′i и все цепи такого вида задают разбиение
множества P(X ).

• Количество цепей равно C
[ n2 ]
n , поскольку каждая симметричная цепь

в P(X ) содержит ровно одно подмножество мощности [n2 ].
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Теорема Шпернера

Теорема (Шпернер, 1928)
Пусть X — конечное множество, |X | = n и M = P(X ). Тогда размер
максимальной антицепи в M равен C

[ n2 ]
n .

Доказательство.

• Мы доказали, что M можно разбить на C
[ n2 ]
n симметричных цепей.

• Следовательно, по теореме Дилуорса, размер максимальной антицепи в M

не превосходит C
[ n2 ]
n .

• С другой стороны, антицепь размера C
[ n2 ]
n в M есть: это все подмножества

мощности [n2 ].

• На самом деле, этот результат является частным случаем более общей
теоремы.
• В ней мы, в частности, получим другое доказательство теоремы
Шпернера.
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Неравенство Любелла — Ямамото – Мешалкина

Теорема (Любелл, 1966)
Пусть X — конечное множество, |X | = n, M = P(X ) и F — антицепь в M.
Тогда ∑

A∈F

1

C
|A|
n

≤ 1.

Доказательство.
• Рассмотрим все возможные максимальные цепи в M. То есть
последовательности подмножеств вида

∅ = A0  A1  A2  . . .  An = X .

• Всего таких цепей n!. Каждое подмножество A ⊂ X содержится ровно в
|A|!(n − |A|)! максимальных цепях.
• При этом, каждая максимальная цепь пересекает антицепь F максимум по
одному элементу.
• Следовательно,

∑
A∈F |A|!(n − |A|)! ≤ n!.

• Сократив это неравенство на n!, получим требуемое.


