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Числа Фибоначчи

Определение
Числа Фибоначчи — последовательность, задаваемая соотношениями

F1 = F2 = 1 и Fn+1 = Fn + Fn−1 при n > 1.

Замечание
• Начало последовательности:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . .
• Можно считать, что F0 = 0.
• Задача о кроликах (Леонардо Пизанский, ∼1202 г.)

I Новорожденная пара кроликов начинает давать потомство через месяц;
I взрослая пара кроликов раз в месяц производит на свет одну

новорожденную пару;
I изначально есть одна новорожденная пара кроликов.
I Сколько кроликов будет через год?
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Свойства чисел Фибоначчи

Теорема
FkF` + Fk−1F`−1 = Fk+`−1.

Доказательство.
` = 1: FkF1 + Fk−1F0 = Fk · 1+ Fk−1 · 0 = Fk = Fk+1−1.

`→ `+ 1: FkF`+1 + Fk−1F` = Fk(F` + F`−1) + Fk−1F` =

= FkF` + FkF`−1 + Fk−1F` = (Fk + Fk−1)F` + FkF`−1 =

= Fk+1F` + FkF`−1 = F(k+1)+`−1 = Fk+(`+1)−1.

Следствие
F 2
n + F 2

n−1 = F2n−1.
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Свойства чисел Фибоначчи

Теорема
n∑

k=1
Fk = Fn+2 − 1.

Доказательство.
n = 1: F1 = F3 − 1.

n→ n + 1:
n+1∑
k=1

Fk =
n∑

k=1
Fk + Fn+1 = (Fn+2 − 1) + Fn+1 = Fn+3 − 1.

Теорема
F1 + F3 + . . .+ F2n−1 = F2n;
F2 + F4 + . . .+ F2n = F2n+1 − 1.

Доказательство.
n = 1: F1 = F2; F2 = F3 − 1.

n→ n + 1: F1 + F3 + . . .+ F2n−1 + F2n+1 = F2n + F2n+1 = F2n+2;
F2 + F4 + . . .+ F2n + F2n+2 = (F2n+1 − 1) + F2n+2 = F2n+3 − 1.
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Числа Каталана

Определение
Числа Каталана — последовательность, задаваемая соотношениями

c0 = 1 и cn+1 = c0cn + c1cn−1 + . . .+ cnc0 при n ≥ 0.

Замечание
1. Eugène Charles Catalan (1814–1894).
2. Начало последовательности (начиная с c0):

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . .

Правильные скобочные последовательности

Определение
Последовательность открывающих и закрывающих скобок называется
правильной скобочной последовательностью, если она удовлетворяет
следующим двум условиям:

I количества открывающих и закрывающих скобок равны;
I для любого k среди первых k скобок открывающих не меньше,

чем закрывающих.
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Числа Каталана и скобочные последовательности

Примеры

1. ( ) ( ( ) ( ) ) — правильная скобочная последовательность;
2. ( ) ) ( ( ( ) ) — неправильная скобочная последовательность.

Теорема
Количество правильных скобочных последовательностей из 2n скобок
равно cn.
Доказательство. Обозначим через sn количество правильных скобочных
последовательностей из 2n скобок.
• Нужно доказать, что sn = cn при всех n ≥ 0.
• s0 = c0 = 1, поскольку есть ровно одна правильная скобочная
последовательность длины 0 (пустая).
• Докажем, что последовательность sn задается тем же рекуррентным
соотношением, что и cn (т. е. что sn+1 = s0sn + s1sn−1 + . . .+ sns0 при n ≥ 0).
• Тогда индукцией по n получим, что sn = cn при всех n ≥ 0.
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Числа Каталана и скобочные последовательности

• Рассмотрим правильную скобочную последовательность длины 2n + 2.

( ( ) ( ( ) ) ) ( ( ) )

• Отметим в ней первую и m-ю скобки, где
m = min{k | среди первых k скобок поровну “(” и “)”}.

I Очевидно, что, m = 2`+ 2, где ` ∈ [0..n];
I между первой и m-й скобками находится правильная скобочная

последовательность длины 2`;
I а после m-й скобки — правильная скобочная последовательность

длины 2(n − `).
• Обратно, любой упорядоченной паре правильных скобочных
последовательностей длин 2` и 2(n− `) соответствует правильная скобочная
последовательность длины 2n + 2.
• Итого, получаем s`sn−` правильных скобочных последовательностей при
данном `.
• Просуммировав по всем ` получим sn+1 = s0sn + s1sn−1 + . . .+ sns0.
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Числа Каталана и скобочные последовательности

Следствие 1
Количество последовательностей длины 2n, в которых n членов равны 1,
n членов равны −1 и все частичные суммы (т. е. суммы первых k членов
при k ≤ n) неотрицательны, равно cn.
Доказательство. Биекция со скобочными последовательностями.
• Открывающей скобке соответствует 1;
• закрывающей скобке соответствует −1.

Следствие 2
Количество путей из точки (0, 0) в точку (n, n) по линиям клетчатой сетки,
идущих вверх и вправо, и не опускающихся ниже прямой y = x , равно cn.

(0, 0)

(n, n)
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Принцип отражений

Рассмотрим все 2n-звенные ломаные,
ведущие из (0, 0) в (2n, 0) по точкам с
целыми координатами, звенья которых —
диагонали единичных квадратиков.

O

1

−1

−2

X

Y

2n1

I Ломаная — хорошая, если она не опускается
ниже оси OX

• Всего ломаных C n
2n, из них хороших — cn.

• А сколько плохих ломаных?

I Плохая ломаная пересекает прямую y = −1.

• Рассмотрим первую точку пересечения и отразим идущую после этой
точки часть ломаной относительно прямой y = −1.

• Получим ломаную, ведущую из (0, 0) в (2n,−2).

I Обратно, любая ломаная из (0, 0) в (2n,−2) пересекает y = −1.

• Рассмотрим первую точку пересечения и отразим идущую после этой
точки часть ломаной относительно прямой y = −1.

• Получим плохую ломаную из (0, 0) в (2n, 0).

I Итого, плохих ломаных столько же, сколько ломаных
из (0, 0) в (2n,−2). Легко видеть, что их Cn−1

2n .
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• Получим плохую ломаную из (0, 0) в (2n, 0).
I Итого, плохих ломаных столько же, сколько ломаных

из (0, 0) в (2n,−2). Легко видеть, что их Cn−1
2n .
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Принцип отражений

Рассмотрим все 2n-звенные ломаные,
ведущие из (0, 0) в (2n, 0) по точкам с
целыми координатами, звенья которых —
диагонали единичных квадратиков.

O

1

−1

−2

X

Y

2n1

I Ломаная — хорошая, если она не опускается
ниже оси OX и плохая в противном случае.
• Всего ломаных C n

2n, из них хороших — cn.
• А сколько плохих ломаных?

I Плохая ломаная пересекает прямую y = −1.
• Рассмотрим первую точку пересечения и отразим идущую после этой

точки часть ломаной относительно прямой y = −1.
• Получим ломаную, ведущую из (0, 0) в (2n,−2).

I Обратно, любая ломаная из (0, 0) в (2n,−2) пересекает y = −1.
• Рассмотрим первую точку пересечения и отразим идущую после этой

точки часть ломаной относительно прямой y = −1.
• Получим плохую ломаную из (0, 0) в (2n, 0).

I Итого, плохих ломаных столько же, сколько ломаных
из (0, 0) в (2n,−2). Легко видеть, что их Cn−1

2n .
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I Ломаная — хорошая, если она не опускается
ниже оси OX и плохая в противном случае.
• Всего ломаных C n

2n, из них хороших — cn.
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I Плохая ломаная пересекает прямую y = −1.
• Рассмотрим первую точку пересечения и отразим идущую после этой

точки часть ломаной относительно прямой y = −1.
• Получим ломаную, ведущую из (0, 0) в (2n,−2).

I Обратно, любая ломаная из (0, 0) в (2n,−2) пересекает y = −1.
• Рассмотрим первую точку пересечения и отразим идущую после этой

точки часть ломаной относительно прямой y = −1.
• Получим плохую ломаную из (0, 0) в (2n, 0).

I Итого, плохих ломаных столько же, сколько ломаных
из (0, 0) в (2n,−2). Легко видеть, что их Cn−1
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Числа Каталана: явная формула

Теорема
cn =

Cn
2n

n + 1
.

Доказательство.
• cn — количество хороших ломаных из (0, 0) в (2n, 0).
• Всего ломаных Cn

2n.
• Плохих ломаных Cn−1

2n .
• Следовательно,

cn = Cn
2n − Cn−1

2n =
(2n)!
n!n!

− (2n)!
(n − 1)!(n + 1)!

=
(2n)!(n + 1− n)

n!(n + 1)!
=

Cn
2n

n + 1
.
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Триангуляции многоугольников

Определение
Триангуляцией многоугольника называется такое разбиение его на
треугольники, при котором любые два треугольника либо не имеют общих
точек, либо имеют ровно одну общую точку (вершину), либо имеют общую
сторону.

Замечание
• Триангуляцию многоугольника можно рассматривать как плоский граф.
Все его грани, кроме внешней, будут треугольниками.
• Далее мы будем рассматривать триангуляции многоугольника его
диагоналями, т. е. вершинами триангуляции будут вершины многоугольника,
а ребрами — стороны и диагонали многоугольника.
• В курсе теории графов было доказано, что в любой триангуляции
k-угольника его диагоналями участвуют ровно k − 3 диагонали,
которые разбивают k-угольник ровно на k − 2 треугольника.
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Числа Каталана и триангуляции

Теорема
Количество способов триангулировать выпуклый (n + 2)-угольник
его диагоналями равно cn.
Доказательство. Индукция по n.
n = 0, n = 1: утверждение очевидно.

0, . . . , n→ n + 1: Пусть A1 . . .An+3 — выпуклый (n + 3)-угольник.
• Сторона A1An+3 входит в некоторый треугольник разбиения.
• Пусть его третья вершина — Am+2, где 0 ≤ m ≤ n.
• Удалив 4A1Am+2An+3, получим (m + 2)-угольник и (n −m + 2)-угольник.
• По индукционному предположению, их можно триангулировать cm и cn−m
способами соответственно.

• Итого, получаем
n∑

m=0
cmcn−m = cn+1 триангуляций.
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Числа Каталана и триангуляции

Следствие 1

cn = n+2
2(n−1)

n−1∑
k=1

ckcn−k , при n ≥ 2.

Доказательство. Рассмотрим триангуляцию выпуклого (n + 2)-угольника.
• Вместо того, чтобы нумеровать его вершины, будет считать,
что в (n + 2)-угольнике есть выделенная сторона.

I Тогда нумерация вершин задается однозначно.

• Выберем диагональ триангуляции и направление на ней.
I Это можно сделать 2(n − 1) способами.

• Итого, получили 2(n − 1)cn триангуляций с отмеченной ориентированной
диагональю.
Далее, мы посчитаем их количество другим способом



Дискретная
математика.

Глава 5.
Рекуррентные
соотношения в
комбинаторике.

А. В. Пастор

Числа Каталана и триангуляции

• Рассмотрим упорядоченную пару из триангуляций выпуклых
(k + 2)-угольника и (n − k + 2)-угольника, где k ∈ [1..n − 1].

I Таких пар
n−1∑
i=1

cicn−i .

I В каждом многоугольнике рассмотренной пары есть выделенная
сторона.

• Склеим получившиеся многоугольники по их выделенным сторонам.
I Получим триангуляцию (n + 2)-угольника.
I Отметим в ней диагональ, по которой произошла склейка.
I Направление выберем так, чтобы первый многоугольник был слева.

• Осталось выделить одну из сторон полученного (n + 2)-угольника.
I Это можно сделать n + 2 способами.

• Итого, получаем (n + 2)
∑n−1

k=1 ckcn−k триангуляций с отмеченной
ориентированной диагональю.

• Следовательно, 2(n − 1)cn = (n + 2)
n−1∑
k=1

ckcn−k .
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Простая рекуррента для чисел Каталана

Следствие 2
cn+1 = 2(2n+1)

n+2 cn, при n ≥ 0.
Доказательство. При n = 0 и n = 1 проверяется непосредственно.
• При n ≥ 2:

cn+1 = c0cn + c1cn−1 + . . .+ cn−1c1 + cnc0;
cn = n+2

2(n−1) (c1cn−1 + . . .+ cn−1c1).

• Следовательно,

cn+1 = 2cn +
2(n − 1)
n + 2

cn =
2(2n + 1)
n + 2

cn.
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Другое доказательство явной формулы

Следствие 3
cn = 2n(2n−1)!!

(n+1)! =
Cn

2n
n+1 , при n > 0.

Доказательство. Равенство cn = 2n(2n−1)!!
(n+1)! доказывается индукцией по n.

n = 1: c1 = 1 = 21·1!!
2! .

n→ n + 1:

cn+1 =
2(2n + 1)
n + 2

cn =
2(2n + 1)
n + 2

· 2
n(2n − 1)!!
(n + 1)!

=
2n+1(2n + 1)!!

(n + 2)!
.

• Далее,

2n(2n − 1)!!
(n + 1)!

=
2nn!(2n − 1)!!
n!(n + 1)!

=
(2n)!!(2n − 1)!!

n!(n + 1)!
=

(2n)!
n!(n + 1)!

=
Cn

2n
n + 1

.
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Числа Белла

Определение
• Разбиением множества X называется его представление в виде
X = X1 ∪ X2 ∪ . . . ∪ Xk , где все подмножества Xk непусты и попарно
не пересекаются.
• Разбиения, отличающиеся лишь нумерацией подмножеств,
считаются одинаковыми.
• Подмножества Xi называются блоками или частями разбиения.
• Числом Белла Bn называется число разбиений n-элементного множества.
• Будем считать, что B0 = 1.
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Числа Белла

Пример
Трехэлементное множество можно разбить пятью способами:
{1, 2, 3} = {1, 2, 3};
{1, 2, 3} = {1, 2} ∪ {3};
{1, 2, 3} = {1, 3} ∪ {2};
{1, 2, 3} = {2, 3} ∪ {1};
{1, 2, 3} = {1} ∪ {2} ∪ {3}.
Следовательно, B3 = 5.

Замечание
1. Eric Temple Bell (1883–1960).
2. Начало последовательности (начиная с B0):

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, . . .
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Рекуррентная формула для чисел Белла

Теорема
Bn+1 =

n∑
i=0

C i
nBn−i .

Доказательство.
• Пусть X1 ∪ . . . ∪ Xk — разбиение множества [1..n + 1];

I не умаляя общности, n + 1 ∈ Xk .

• Тогда X1 ∪ . . . ∪ Xk−1 — разбиение множества [1..n + 1] \ Xk .
• Пусть |Xk | = i + 1 (где i ∈ [0..n]).

I Тогда Xk можно выбрать C i
n способами.

I Оставшиеся элементы можно разбить Bn−i способами.

• Следовательно, всего
n∑

i=0
C i
nBn−i разбиений.
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Треугольник Белла

Определение
• Определим числа An,k (где n ≥ k ≥ 1) при помощи следующих
соотношений: A1,1 = 1; An+1,1 = An,n и An+1,k+1 = An+1,k + An,k .
• Эти числа образуют треугольник Белла.

1
1 2

2 3 5
5 7 10 15

15 20 27 37 52
52 67 87 114 151 203

203 255 322 409 523 674 877

Теорема
Для всех n ∈ N выполнено равенство An,n = Bn.
Доказательство. Докажем следующее более общее утверждение.
• An,k — это количество таких разбиений множества [1..n], в которых в
одном блоке с n могут встречаться только числа, меньшие k .
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Треугольник Белла

• Индукция по n.
База: при n = 1 утверждение очевидно.
Переход (n→ n + 1): будем доказывать индукцией по k .

I k = 1: An+1,1 = An,n — это количество разбиений множества [1..n + 1],
в которых n + 1 является единственным элементом в своем блоке.

I k → k + 1: пусть X1 ∪ . . . ∪ Xs — разбиение множества [1..n + 1], в
котором в одном блоке с n+ 1 могут быть только числа, меньшие k + 1.
• Не умаляя общности можно считать, что n + 1 ∈ Xs .
• Далее возможны два случая: k /∈ Xs и k ∈ Xs .
1◦ Пусть k /∈ Xs . Тогда в Xs кроме n + 1 могут быть только числа,

меньшие k . Таких разбиений An+1,k .
2◦ Пусть k ∈ Xs . Тогда удалив k и уменьшив все большие k числа на 1,

получим разбиение множества [1..n], в котором в одном блоке с n могут
встречаться только числа, меньшие k . Таких разбиений An,k .

• Итого, получаем An+1,k + An,k = An+1,k+1 разбиений.
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Числа Стирлинга второго рода

Определение
Числом Стирлинга второго рода S(n, k) называется число разбиений
n-элементного множества на k блоков.

Пример
Трехэлементное множество можно тремя способами разбить на два блока:
{1, 2, 3} = {1, 2} ∪ {3}; {1, 2, 3} = {1, 3} ∪ {2}; {1, 2, 3} = {2, 3} ∪ {1}.
Следовательно, S(3, 2) = 3.

Замечание
• Будем считать, что S(0, 0) = 1 и S(0, k) = 0 при k > 0.
• Очевидно, что

I S(n, k) = 0, при k > n > 0;
I S(n, 0) = 0, при всех n > 0;
I S(n, 1) = S(n, n) = 1, при всех n > 0.

• Заметим также, что
∑n

k=0 S(n, k) = Bn.
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Числа Стирлинга второго рода

Утверждение 1
S(n, 2) = 2n−1 − 1, при всех n > 0.
Доказательство.
• Пусть [1..n] = X1 ∪ X2 — разбиение множества [1..n] на два блока.
• Не умаляя общности, пусть 1 ∈ X1;
• тогда X2 — произвольное непустое подмножество множества [2..n];
• таких подмножеств 2n−1 − 1.

Утверждение 2
S(n, n − 1) = C 2

n , при всех n > 0.
Доказательство.
• В любом разбиении [1..n] на n − 1 блок есть ровно один блок,
состоящий из двух элементов.
• Такой блок можно выбрать C 2

n способами.
• Остальные блоки выбираются однозначно.
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Рекуррентная формула для чисел Стирлинга второго рода

Теорема
S(n, k) = kS(n − 1, k) + S(n − 1, k − 1).
Доказательство.
• Пусть X1 ∪ . . . ∪ Xk — разбиение множества [1..n].

I Не умаляя общности, n ∈ Xk .
• Далее, возможны два случая: блок Xk может состоять только из n,
либо содержать и другие элементы.
1◦ Пусть Xk = {n}. Тогда X1 ∪ . . . ∪ Xk−1 — разбиение множества

[1..n − 1]. Таких разбиений S(n − 1, k − 1) и каждому из них
соответствует ровно одно разбиение для первого случая.

2◦ Пусть {n}  Xk . Тогда X1 ∪ . . . ∪ Xk−1 ∪ X ′k , где X ′k = Xk \ {n} —
разбиение множества [1..n − 1]. Таких разбиений S(n − 1, k). Каждому
из них соответствует ровно k разбиений для второго случая, поскольку
число n можно добавить в любой из k блоков.

• Итого, получаем kS(n − 1, k) + S(n − 1, k − 1) разбиений множества [1..n]
на k блоков.
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Числа Стирлинга второго рода и сюръективные отображения

Теорема
Число сюръективных отображений из n-элементного множества в
k-элементное равно k!S(n, k).
Доказательство. Пусть f : [1..n]→ [1..k] — сюръекция.
• Положим Xi = f −1(i).
• Тогда [1..n] = X1 ∪ . . . ∪ Xk — упорядоченное разбиение множества [1..n]
на k блоков.

I Т. е. разбиения, отличающиеся сменой нумерации блоков,
здесь считаются различными.

• Обратно, каждому упорядоченному разбиению множества [1..n] на k
блоков можно поставить в соответствие сюръективное отображение из
множества [1..n] в множество [1..k].

I Образом элемента x ∈ [1..n] будет номер содержащего x блока.
• Каждому разбиению множества [1..n] на k блоков соответствует k!
упорядоченных разбиений. Следовательно, число упорядоченных разбиений
множества [1..n] на k блоков равно k!S(n, k).
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Числа Стирлинга второго рода: явная формула

Теорема

S(n, k) =
1
k!

k∑
s=0

(−1)k−sC s
k s

n.

Доказательство.

• Мы уже доказывали, что число сюръективных отображений

f : [1..n]→ [1..k] равно
k∑

s=1

(−1)k−sC s
k s

n.

• Тем самым,

k!S(n, k) =
k∑

s=1

(−1)k−sC s
k s

n,

откуда, сократив на k!, получим требуемое.
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Числа Стирлинга второго рода и многочлены

Теорема
При всех x ∈ R и n ∈ N выполнено равенство

xn =
n∑

k=0

S(n, k)x(x − 1) . . . (x − k + 1).

Доказательство. Докажем сначала, что это равенство выполнено при всех
натуральных x , больших n.
• Рассмотрим все возможные отображения из [1..n] в [1..x ].
• Мы знаем, что их xn. Посчитаем их число другим способом.
• Рассмотрим произвольное отображение f : [1..n]→ [1..x ].

I Обозначим его образ через Y (т. е. Y def
= f ([1..n])). Пусть |Y | = k .

I Тогда отображение f является сюръекцией из [1..n] на Y .
I Таких сюръекций существует ровно k!S(n, k).
I Множество Y ⊂ [1..x ] (где |Y | = k) можно выбрать C k

x способами.
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Числа Стирлинга второго рода и многочлены
• Итого, для каждого k ∈ [0..n] существует ровно

k!S(n, k)C k
x = S(n, k)x(x − 1) . . . (x − k + 1)

отображений с образом из k элементов.
• Складывая получившиеся выражения по всем возможным k получаем
требуемую формулу.
• Итак, мы доказали, что равенство

xn =
n∑

k=0

S(n, k)x(x − 1) . . . (x − k + 1) (1)

выполнено при всех x ∈ N, таких, что x > n.
• Заметим, что и в левой и в правой частях равенства (1) записаны
многочлены с целыми коэффициентами от переменной x .
• Мы доказали, что значения этих многочленов равны для бесконечного
множества значений x . Следовательно, равны сами многочлены.
• Таким образом, значения этих многочленов равны при всех x .
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Числа Стирлинга первого рода

Определение
• Пусть c(n, k) — число перестановок из Sn, имеющих в точности k циклов.
• Будем считать, что c(0, 0) = 1 и c(0, k) = 0 при k > 0.
• Обозначим также s(n, k) = (−1)n−kc(n, k).
• Числа s(n, k) называются числами Стирлинга первого рода,
• а числа c(n, k) — числами Стирлинга первого рода без знака.

Пример
• В S3 есть три перестановки с двумя циклами: (12)(3), (13)(2), (23)(1).
• Следовательно, c(3, 2) = 3 и s(3, 2) = −3.

Теорема
c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1).
Доказательство.
• Пусть σ ∈ Sn−1 — перестановка ровно с k циклами.
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Числа Стирлинга первого рода

I Мы можем вставить n после любого из элементов 1, 2, . . . , n − 1 в
разложении перестановки σ на независимые циклы.

I Это можно сделать n − 1 способом.
I Получим перестановку σ′ ∈ Sn с k циклами, в которой n входит в цикл

длины не меньше двух.
I Очевидно, что каждая такая перестановка σ′ будет получена ровно один

раз. Следовательно, таких перестановок (n − 1)c(n − 1, k).
• Пусть τ ∈ Sn−1 — перестановка ровно с k − 1 циклом.

I Добавим туда элемент n так, чтобы он образовывал цикл длины 1.
I Получим перестановку τ ′ ∈ Sn с k циклами, в которой n входит в цикл

длины один.
I Очевидно, что каждая такая перестановка τ ′ будет получена ровно один

раз. Следовательно, таких перестановок c(n − 1, k − 1).

• Итого, получаем (n − 1)c(n − 1, k) + c(n − 1, k − 1) перестановок из Sn
с k циклами.



Дискретная
математика.

Глава 5.
Рекуррентные
соотношения в
комбинаторике.

А. В. Пастор

Числа Стирлинга первого рода

Теорема
При всех x ∈ R и n ∈ N выполнено равенство

n∑
k=0

c(n, k)xk = x(x + 1) . . . (x + n − 1).

Доказательство. Индукция по n.
База: при n = 1 утверждение очевидно.
Переход (n − 1→ n): x(x + 1) . . . (x + n − 2)(x + n − 1) =
= x(x + 1) . . . (x + n − 2) · x + x(x + 1) . . . (x + n − 2) · (n − 1) =

=
n−1∑
k=0

c(n − 1, k)xk · x +
n−1∑
k=0

c(n − 1, k)xk · (n − 1) =

=
n∑

k=1
c(n − 1, k − 1)xk +

n−1∑
k=0

(n − 1)c(n − 1, k)xk =

=
n∑

k=0
((n − 1)c(n − 1, k) + c(n − 1, k − 1))xk =

n∑
k=0

c(n, k)xk .
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Следствие
При всех x ∈ R и n ∈ N выполнено равенство

n∑
k=0

s(n, k)xk = x(x − 1) . . . (x − n + 1).

Доказательство.
Заменим в предыдущей формуле x на −x и домножим на (−1)n.
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Связь между числами Стирлинга первого и второго рода

Теорема
При всех m, n ∈ N выполнено равенство

∞∑
k=0

S(m, k)s(k , n) = δmn

(где δmn = 1 при m = n и δmn = 0 в остальных случаях).

Доказательство. xm =
m∑

k=0

S(m, k)x(x − 1) . . . (x − k + 1) =

=
m∑

k=0

(
S(m, k) ·

k∑
n=0

s(k , n)xn
)

=
∞∑
n=0

( ∞∑
k=0

S(m, k)s(k , n)

)
xn.

Приравнивая коэффициенты при xn получаем требуемое равенство.
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Числа Стирлинга и линейная алгебра
• Кольцо многочленов R[x ] можно рассматривать как линейное
пространство над R.

I Это пространство имеет счётную размерность;
I его базис — 1, x , x2, x3, . . . (т. е. все степени x);
I 1, x , x(x − 1), x(x − 1)(x − 2), . . . — другой базис этого же пространства.

Замечание
I Выражение x(x − 1) . . . (x − k + 1) называется нисходящей факториальной

степенью или убывающим факториалом и обозначается xk или (x)k ;

I выражение x(x + 1) . . . (x + k − 1) называется восходящей факториальной
степенью или возрастающим факториалом и обозначается xk или (x)k .

• Мы доказали формулы xn =
n∑

k=0
S(n, k)xk и xn =

n∑
k=0

s(n, k)xk .

• То есть числа S(n, k) — это коэффициенты разложения многочленов
1, x , x2, . . . по базису 1, x , x2, . . .. А числа s(n, k) — это коэффициенты
разложения многочленов 1, x , x2, . . . по базису 1, x , x2, . . ..
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• Из чисел Стирлинга первого и второго рода можно составить
матрицы s и S соответственно.

I Это матрицы счетной размерности. Их элементы определяются
равенствами sij = s(i , j) и Sij = S(i , j).

s =



1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 −1 1 0 0 0 0 0 . . .
0 2 −3 1 0 0 0 0 . . .
0 −6 11 −6 1 0 0 0 . . .
0 24 −50 35 −10 1 0 0 . . .
0 −120 274 −225 85 −15 1 0 . . .
0 720 −1764 1624 −735 175 −21 1 . . .
...

...
...

...
...

...
...

...
. . .


; S =



1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 1 1 0 0 0 0 0 . . .
0 1 3 1 0 0 0 0 . . .
0 1 7 6 1 0 0 0 . . .
0 1 15 25 10 1 0 0 . . .
0 1 31 90 65 15 1 0 . . .
0 1 63 301 350 140 21 1 . . .
...

...
...

...
...

...
...

...
. . .


.

• Эти матрицы состоят из коэффициентов разложения элементов одного
базиса по другому. Такие матрицы называются матрицы перехода.
• Теорема о связи чисел Стирлинга первого и второго рода фактически
означает, что S · s = E , то есть матрицы S и s взаимно обратны.


