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Упорядоченные и неупорядоченные разбиения

Определение
• Разбиением натурального числа n на m слагаемых называется
представление n в виде n = x1 + x2 + . . .+ xm, где x1, x2, . . . , xm ∈ N.
• Разбиения называются упорядоченными, если порядок слагаемых
имеет значение, и неупорядоченными в противном случае.

Пример
Есть три упорядоченных разбиения числа 4 на три слагаемых:

4 = 2+ 1+ 1 = 1+ 2+ 1 = 1+ 1+ 2.
Но неупорядоченное разбиение только одно.

Замечание
• Строго говоря, упорядоченное разбиение — это последовательность
натуральных чисел (x1, x2, . . . , xm), сумма членов которой равна n.
• Неупорядоченное разбиение — это класс эквивалентности,
где эквивалентными считаются последовательности,
отличающиеся лишь порядком членов.
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Упорядоченные разбиения

Теорема

1. Количество упорядоченных разбиений числа n на m слагаемых
равно Cm−1

n−1 .
2. Количество упорядоченных разбиений числа n равно 2n−1.

Доказательство.
1. Нужно найти количество натуральных решений уравнения

x1 + x2 + . . .+ xm = n.
• Выложим в ряд n шариков и расставим между ними m − 1 перегородку.
• Это можно сделать Cm−1

n−1 способами.
• Шарики разобьются на m групп: пусть в i-й группе xi шариков.
• Получаем биекцию между решениями и расстановками перегородок.

2.
n∑

m=1
Cm−1
n−1 = 2n−1.
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Упорядоченные разбиения и числа Фибоначчи

Определение
Числа Фибоначчи — это последовательность Fn, задаваемая следующими
условиями: F1 = F2 = 1 и Fn+1 = Fn + Fn−1 при n > 1.

Теорема
Количество упорядоченных разбиений числа n на нечетные слагаемые
равно Fn.
Доказательство. Индукция по n.
База: при n = 1 и n = 2 утверждение очевидно.
Переход (n − 1, n→ n + 1): Пусть n + 1 = x1 + . . .+ xm−1 + xm — разбиение
на нечетные слагаемые.

I Рассмотрим два случая: xm = 1 и xm ≥ 3.
1◦ xm = 1. Тогда n = x1 + . . .+ xm−1. Таких разбиений Fn.
2◦ xm ≥ 3. Тогда n − 1 = x1 + . . .+ xm−1 + (xm − 2). Таких разбиений Fn−1.

I Итого, получаем Fn + Fn−1 = Fn+1 разбиений.
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Неупорядоченные разбиения и диаграммы Юнга

Определение
• pm(n) — количество неупорядоченных разбиений числа n на m слагаемых;
• p(n) — количество неупорядоченных разбиений числа n.

Стандартная форма записи
Слагаемые неупорядоченного разбиения обычно записывают в
невозрастающем порядке:

n = x1 + . . .+ xm, где x1 ≥ x2 ≥ . . . ≥ xm > 0.

Диаграммы Юнга

• Каждому разбиению числа n соответствует
следующая диаграмма из n клеток.
• Столбцы диаграммы соответствуют слагаемым.
Количество столбцов равно m.

5 4 2 2 2 1+ + + + + = 16
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Еще один способ записи разбиения

Теорема

1. Количество решений уравнения t1 + 2t2 + 3t3 + . . .+ ntn = n (1)
в целых неотрицательных числах равно p(n).

2. Количество решений уравнения (1), удовлетворяющих условию
t1 + . . .+ tn = m, равно pm(n).

Доказательство. Пусть n = x1 + . . .+ xm — разбиение числа n.
• Обозначим через tk количество слагаемых в этом разбиении, равных k .
• Получим решение уравнения (1).
• Аналогично, каждому решению (t1, t2, . . . , tn) уравнения (1)
соответствует разбиение n, в котором ровно tk слагаемых, равных k .
• При этом, количество слагаемых в разбиении будет равно t1 + . . .+ tn.
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Рекуррентная формула для числа разбиений

Теорема
pm(n) = pm(n −m) + pm−1(n −m) + . . .+ p1(n −m).

Доказательство.

• Рассмотрим диаграмму Юнга с n клетками и m
столбцами.
• Удалим нижнюю строку.
• Получим диаграмму с n −m клетками и k ≤ m
столбцами.

Следствие 1
Количество неупорядоченных разбиений числа n −m на не более чем m
слагаемых равно pm(n).
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Рекуррентная формула для числа разбиений

Следствие 2
pm(n) = pm(n −m) + pm−1(n − 1).

Доказательство.
pm(n) = pm(n −m) + (pm−1(n −m) + . . .+ p1(n −m)) =

= pm(n −m) + pm−1(n − 1).

Замечание
• Отметим, что p1(n) = 1 при всех n.
• При помощи доказанных выше рекуррентных соотношений, можно
получить явные формулы для pm(n) при малых m.
• Мы сделаем это для m = 2 и m = 3.
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Явные формулы для малых m

Определение
Пусть x ∈ R.
• Через [x ] обозначается целая часть числа x , т. е, наибольшее целое число,
не превосходящее x .

• Через {x} обозначается дробная часть числа x , т. е, {x} def
= x − [x ].

Теорема (де Морган)
1. p2(n) =

[
n
2

]
;

2. p3(n) =
[
n2+3
12

]
.

Доказательство. Индукция по n.
1. База: при n = 1 и n = 2 утверждение очевидно.

Переход (n − 2→ n):

p2(n) = p2(n − 2) + p1(n − 1) =
[
n−2
2

]
+ 1 =

[
n−2
2 + 1

]
=
[
n
2

]
.
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Явные формулы для малых m

2. База: при n = 1, n = 2 и n = 3 утверждение очевидно.
Переход (n − 3→ n):
p3(n) = p3(n − 3) + p2(n − 1) =

=
[ (n−3)2+3

12

]
+
[
n−1
2

]
=

=
[ (n2−6n+12)+(6n−6)

12

]
=

=
[
n2+6
12

]
=

=
[
n2+3
12

]
.

• Нужно проверить подсвеченные красным равенства.
• Для проверки первого из них, нам понадобится следующая лемма.

Лемма
[x ] + [y ] = [x + y ]⇔ {x}+ {y} < 1.

Доказательство.
x + y = ([x ] + {x}) + ([y ] + {y}) = ([x ] + [y ]) + ({x}+ {y}).
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Явные формулы для малых m

Вернемся к доказательству теоремы.
• Здесь мы будем пользоваться тем, что точный квадрат может быть
сравним только с 0 или 1 по модулям 3 и 4.

2.1.
[ (n−3)2+3

12

]
+
[
n−1
2

]
=
[ (n2−6n+12)+(6n−6)

12

]
.

Нужно доказать, что
{ (n−3)2+3

12

}
+
{
n−1
2

}
< 1.

• При n /
... 2:

{
n−1
2

}
= 0 и

{ (n−3)2+3
12

}
< 1.

• При n
... 2: пусть n = 2k , тогда

{
n−1
2

}
= 1

2 и{ (n−3)2+3
12

}
=
{ 4k2−12k+12

12

}
=
{

k2

3

}
≤ 1

3 .

2.2.
[
n2+6
12

]
=
[
n2+3
12

]
.

Нужно доказать, что числа n2+4
12 , n2+5

12 , n2+6
12 не целые.

• Но n2 + 4 /
... 3, т. к. n2 6≡ 2 (mod 3);

• n2 + 5 /
... 4, т. к. n2 6≡ 3 (mod 4);

• n2 + 6 /
... 4, т. к. n2 6≡ 2 (mod 4).
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О явной формуле в общем случае

Теорема
• pm(n) =

nm−1

(m−1)!m! + cm−2(m, n)n
m−2 + . . .+ c1(m, n)n + c0(m, n), где

коэффициенты ck(m, n) зависят только от класса вычетов n по модулю m!.
• В частности, если n ≡ n0 (mod m!) при фиксированном n0, то pm(n)
является многочленом степени m − 1 от переменной n. (б/д)

Замечание
• Вспомним, что количество упорядоченных разбиений
числа n на m слагаемых равно Cm−1

n−1 .
• При фиксированном m это также многочлен от n
со старшим членом nm−1

(m−1)! .

• Следовательно, lim
n→∞

pm(n)

Cm−1
n−1

= 1
m! .

• Это означает, что “почти все” разбиения n на m слагаемых
состоят из различных слагаемых.
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Разбиения на различные слагаемые

Теорема
Количество разбиений числа n на m различных слагаемых
равно pm

(
n − m(m−1)

2

)
.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.
• Рассмотрим числа yi = xi −m + i .

I yi − yi+1 = (xi −m + i)− (xi+1 −m + i + 1) = xi − xi+1 − 1 ≥ 0;
I следовательно, y1 ≥ y2 ≥ . . . ≥ ym = xm > 0;
I y1 + y2 + . . .+ ym =

= x1 + x2 + . . .+ xm − ((m − 1) + (m − 2) + . . .+ 1) = n − m(m−1)
2 .

• Итак, каждому разбиению n на m различных слагаемых поставили в
соответствие разбиение n − m(m−1)

2 на m слагаемых.
• Очевидно, что это биекция.
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Пентагональная формула Эйлера

Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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Пентагональная формула Эйлера

Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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Пентагональная формула Эйлера

Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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Пентагональная формула Эйлера

Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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Теорема (пентагональная формула Эйлера)
Если число n не представимо в виде 1

2(3k
2 ± k), где k ∈ N, то оно имеет

одинаковое количество разбиений на четное и на нечетное число различных
слагаемых. В противном случае, эти количества отличаются на 1.

Доказательство.
• Пусть n = x1 + x2 + . . .+ xm, где x1 > x2 > . . . > xm > 0.

• Введем обозначения: k def
= max{i | xi = x1 − i + 1} и ` def

= xm.
I Если k ≥ `, убираем xm и увеличиваем x1, . . . , x` на 1.
I Если k < `, уменьшаем x1, . . . , xk на 1 добавляем xm+1 = k .

• Проблема: k = m = ` или k = m = `− 1. В этих случаях ни
одно из указанных преобразований сделать невозможно.

I При k = m = ` получаем n = k2 + k(k−1)
2 = 1

2 (3k
2 − k).

I При k = m = `− 1 получаем n = k2 + k(k+1)
2 = 1

2 (3k
2 + k).

• В каждом из случаев есть ровно одна такая диаграмма.
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О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

• Дело в том, что числа вида 1
2 (3k

2 − k) — это так назы-
ваемые пятиугольные числа.

• Формально, k-е пятиугольное число — это сумма первых
k членов арифметической прогрессии с первым членом 1
и разностью 3:
1
2 (3k

2 − k) = 1+ 4+ 7+ . . .+ (3k − 2).

• Эти числа имеют геометрическое представление в виде
числа точек в пятиугольнике.

• Числа вида 1
2 (3k

2 + k) получаются похожим образом:
1
2 (3k

2 + k) = 2+ 5+ 8+ . . .+ (3k − 1), но для них нет
столь красивого геометрического представления.

• Аналогично, n-угольные числа — это суммы первых k
членов арифметической прогрессии с первым членом 1 и
разностью n − 2.

• Наиболее известны треугольные числа:
k(k+1)

2 = 1+ 2+ 3+ . . .+ k.

1
2(3 · 1

2 − 1) = 1.
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k(k+1)

2 = 1+ 2+ 3+ . . .+ k.

1
2(3 · 4

2 − 1) =
= 1+ 4+ 7+ 10.
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О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

• Дело в том, что числа вида 1
2 (3k

2 − k) — это так назы-
ваемые пятиугольные числа.

• Формально, k-е пятиугольное число — это сумма первых
k членов арифметической прогрессии с первым членом 1
и разностью 3:
1
2 (3k

2 − k) = 1+ 4+ 7+ . . .+ (3k − 2).

• Эти числа имеют геометрическое представление в виде
числа точек в пятиугольнике.

• Числа вида 1
2 (3k

2 + k) получаются похожим образом:
1
2 (3k

2 + k) = 2+ 5+ 8+ . . .+ (3k − 1), но для них нет
столь красивого геометрического представления.

• Аналогично, n-угольные числа — это суммы первых k
членов арифметической прогрессии с первым членом 1 и
разностью n − 2.

• Наиболее известны треугольные числа:
k(k+1)

2 = 1+ 2+ 3+ . . .+ k.

1
2(3 · 5

2 − 1) =
= 1+ 4+ 7+ 10+ 13.
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А. В. Пастор

О многоугольных числах

Почему предыдущая теорема называется пентагональная формула Эйлера?

• Дело в том, что числа вида 1
2 (3k

2 − k) — это так назы-
ваемые пятиугольные числа.

• Формально, k-е пятиугольное число — это сумма первых
k членов арифметической прогрессии с первым членом 1
и разностью 3:
1
2 (3k

2 − k) = 1+ 4+ 7+ . . .+ (3k − 2).

• Эти числа имеют геометрическое представление в виде
числа точек в пятиугольнике.

• Числа вида 1
2 (3k

2 + k) получаются похожим образом:
1
2 (3k

2 + k) = 2+ 5+ 8+ . . .+ (3k − 1), но для них нет
столь красивого геометрического представления.

• Аналогично, n-угольные числа — это суммы первых k
членов арифметической прогрессии с первым членом 1 и
разностью n − 2.

• Наиболее известны треугольные числа:
k(k+1)

2 = 1+ 2+ 3+ . . .+ k.

1
2(3 · 6

2 − 1) =
= 1+ 4+ 7+ 10+ 13+ 16.



Дискретная
математика.

Глава 4.
Разбиения

чисел в сумму
слагаемых.

А. В. Пастор

Асимптотические оценки числа p(n)

Теорема (формула Харди–Рамануджана)

p(n) ∼ 1
4n
√
3
eπ
√

2/3
√
n (б/д).

Замечание
Есть и формулы, дающие более точное приближение числа p(n), чем
теорема Харди-Рамануджана. Например, те же авторы доказали также
следующую формулу:

p(n) =
1

2π
√
2
d

dn

(
eCλn

λn

)
+ O(eD

√
n),

где C = π
√

2/3, λn =
√

n − 1
24 и D — любое число, большее 1

2C (б/д).


