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Плоские и планарные графы

Определение
Граф называется планарным, если его можно изобразить
на плоскости так, чтобы его рёбра не пересекались во
внутренних точках. Вершины изображаются точками, а
рёбра — ломаными. Внутренние точки любой ломаной,
изображающей ребро графа, не должны быть вершинами
графа.

Определение
Плоским графом (или плоским изображением) мы будем
называть конкретное изображение планарного графа на
плоскости без пересечений и самопересечений рёбер.
• Таким образом, планарному графу могут
соответствовать разные плоские графы.
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Грань плоского графа

• Изображение плоского графа делит плоскость на части —
грани. Это ключевой объект для плоского графа, отличающий
его от абстрактного планарного графа. Ниже мы дадим
формальное определение граней.
• На плоскости изображен плоский граф G . Пусть M —
множество всех точек плоскости, не входящих в изображение
G .
• Пусть запись A ∼ B означает, что точки A,B ∈ M можно
соединить ломаной, не пересекающей изображение графа G .
Укажем три важных свойства ∼.

Утверждение
∼ — отношение эквивалентности.

Доказательство. • Рефлексивность. A ∼ A

• Симметричность. Если A ∼ B, то B ∼ A.
• Транзитивность. Если A ∼ B и B ∼ C , то A ∼ C . 2
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Грани плоского графа G — классы эквивалентности по
отшению ∼.

• Таким образом, все точки плоскости, не лежащие на
изображении графа G , разбиты на грани.
• Множество всех граней графа G обозначается через
F (G ), а их количество — через f (G ).
• Две точки из одной грани графа G могут быть
соединены ломаной, не пересекающей изображение G .
• Любая ломаная, соединяющая две точки из разных
граней, пересекает изображение G .
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Теорема Жордана для замкнутой ломаной

Теорема 1
(C. Jordan, 1887.) Замкнутая несамопересекающаяся ломаная
P делит точки плоскости, не лежащие на P, на две такие
части, что выполнены следующие условия:
(1) любые две точки из одной части можно соединить
ломаной, не пересекающей P;
(2) любая ломаная, соединяющая две точки из разных частей,
пересекает P.
Доказательство. • Пусть P1 . . .Pm — вершины P в порядке
обхода по часовой стрелке. Обозначим через M множество
всех точек плоскости, не лежащих на P.
• Зафиксируем на плоскости вектор ℓ, не параллельный ни
одной из сторон P. Из каждой точки A ∈ M выпустим луч
ℓ(A) в направлении ℓ.
• В случае, если ℓ(A) содержит вершину Pi многоугольника P,
но стороны Pi−1Pi и PiPi+1 лежат в одной полуплоскости
относительно содержащей ℓ(A) прямой, мы будем говорить,
что многоугольник P в вершине Pi касается ℓ(A).
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• Посчитаем число p(A) точек пересечения ℓ(A) с P , не
являющихся касаниями. Очевидно, что p(A) конечно.
• Часть M0 будет состоять из всех точек A ∈ M, для
которых p(A) четно, а часть M1 будет состоять из всех
точек B ∈ M, для которых p(B) нечетно.

Утверждение
M0 и M1 непусты.

Доказательство. • Рассмотрим прямую ℓ0, параллельную
вектору ℓ, и проходящую через внутреннюю точку
ломаной P (то есть точку, не являющуюся ее вершиной).
• При движении по ℓ0 в направлении вектора ℓ отметим
последнее пересечение с ℓ во внутренней точке — пусть
это точка X .
• Рассмотрим содержащий X малый отрезок [Y ,Z ] на
этом ℓ0, не пересекающий P в отличных от X точках,
пусть Y лежит перед X при движении в направлении ℓ.
• Тогда p(Y ) = 1 (единственное пересечение в точке X ),
а p(Z ) = 0. 2
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Утверждение
Пусть A,B ∈ M и отрезок [A,B] не пересекает P. Тогда p(A) и
p(B) имеют одинаковую четность. В частности, выполнено
условие (2).

Доказательство. • Если AB ∥ ℓ, то утверждение очевидно.
• Если нет, то отметим на отрезке AB все такие точки A1, . . . ,
Ak в направлении от A к B, что ℓ(Ai ) касается P (если они
есть). Положим A0 = A и Ak+1 = B.
• Тогда для каждого i ∈ [0..k], все точки отрезка [Ai ,Ai+1]
имеют, очевидно, одинаковое значение функции p, а при
переходе на соседний отрезок функция p может иметь четный
скачок (каждое касание ℓ(Ai ) многоугольника P добавляет
точкам с одной стороны от Ai двойку к количеству
пересечений, см. рис. a).
• В любом случае, на всем отрезке [A,B] функция p имеет
одинаковую четность. 2

a b

b

b

b

b b

b

b

b

A=A0

A1

B=A2 P

b bbc bcb b bA

A′
B′B∗

P ′

P ′′

B



Теория графов.
Глава 6.

Планарные
графы.

Д. В. Карпов

Докажем (1).
• Пусть A,B ∈ Mi . Если отрезок [A,B] не пересекает P, то все
понятно. Пусть пересекает, причем A1 и B1 — ближайшие к A
и B соответственно точки пересечения.
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• Отметим на отрезке [A,A1] точку A′ очень близко к A1, а на
отрезке [B1,B] — точку B ′ очень близко к B1, пусть
|A1A

′| = |B1B
′| = δ (см. рис. b). Тогда p(A) = p(A′) и

p(B) = p(B ′).
• Проведем вдоль каждой стороны многоугольника P две
параллельных прямых на расстоянии δ с разных сторон,
выбрав это число столь малым, чтобы в результате
получились два “очень близких” к P многоугольника P ′ и P ′′

так, чтобы стороны P ′ и P ′′ не пересекали сторон P.
(Достаточно выбрать δ меньше, чем минимальное расстояние
от стороны P до вершины, на ней не лежащей.)
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• НУО A′ лежит на P ′. Если и B ′ лежит на P ′, то мы
построили от A′ до B ′ ломаную, не пересекающую P ,
тогда такая ломаная построена и от A до B .
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• Пусть B ′ лежит на P ′′, тогда обозначим через B∗ точку
пересечения P ′ с прямой AB , лежащую около B1
(разумеется, на расстоянии δ).
• Несложно понять, что p(B∗)− p(B ′) = ±1 (разница
состоит в том, что ровно для одной из этих точек
учитывается пересечение около точки B1).
• Однако применив доказанное выше утверждение,
получим p(B∗) ≡ p(A′) ≡ p(A) ≡ p(B) ≡ p(B ′) (mod 2),
противоречие. 2
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Плоскость и сфера

• Плоскость и сфера переводятся друг в друга
стереографической проекцией.
• Поставим сферу на плоскость, точку касания назовём
южным полюсом, противоположную точку — северным
полюсом N. Каждая точка A ̸= N сферы перейдёт в
точку пересечения плоскости и луча NA.

Утверждение
Граф является планарным тогда и только тогда, когда
его можно изобразить на сфере без пересечения рёбер во
внутренних точках.

Доказательство. • Переводя изображение графа со
сферы на плоскость нужно лишь выбрать северный
полюс так, чтобы он не совпадал ни с одной из вершин
графа и не попадал на рёбра. 2
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• Плоское изображение планарного графа ограничено
(его можно поместить в большой круг).
• Поэтому в плоском изображении планарного графа есть
ровно одна неограниченная внешняя грань, которая
визуально сильно отличается от всех остальных, а в
сферическом изображении такой грани нет.
• Грань сферического изображения графа, содержащая
северный полюс будет соответствовать при
стереографической проекции внешней грани плоского
изображения.
• Таким образом, перемещая северный полюс на разные
грани, можно любую грань сферического изображения
сделать внешней гранью в плоском изображении графа.
Это лишний раз подчеркивает, что на самом деле
внешняя грань не отличается от остальных.
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Граница грани
• Рассмотрим ребро e плоского графа G . Либо по разные
стороны от e расположены разные грани (тогда ребро e —
граничное ребро этих двух граней), либо по обе стороны от e
— одна и та же грань, тогда назовем ребро e внутренним
ребром этой грани. Обозначим через Ed множество всех
граничных и внутренних рёбер грани d .
• Граничные вершины грани d — это концы ребер из Ed .
Обозначим множество граничных вершин грани d через Vd .
• Граничные и внутренние рёбра грани d — это в точности те
рёбра, до которых от внутренней точки грани d можно дойти
по ломаной, не пересекая изображение графа.
• Граничные вершины грани d — это в точности те вершины,
до которых можно дойти по ломаной от внутренних точек
этой грани, не пересекая её граничных и внутренних рёбер.
• Граница грани d — это подграф B(d) графа G с
множеством вершин Vd и множеством рёбер Ed .
• Размер границы грани d мы определим, как количество
граничных рёбер этой грани плюс удвоенное количество
внутренних рёбер. Обозначать эту величину будем через b(d).
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Свойство 1
Если сложить размеры границ всех граней, получится
удвоенное количество рёбер.

Доказательство. Внутреннее ребро грани два раза
считается в размере границы этой грани. Граничное
ребро двух граней по разу считается в их размерах. 2

Свойство 2
Любые две точки на границе грани d можно соединить
ломаной, проходящей в d .

Доказательство. Пусть A — внутренняя точка грани d . От
нее можно провести ломаные, не пересекающие
изображение G до любых двух граничных. Все точки на
этих ломаных лежат в d . 2
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Свойство 3
Если две точки A и B на изображении графа G можно
соединить ломаной L, не пересекающей изображения G , то A
и B лежат на границе некоторой грани.

Доказательство. A и B лежат на границе грани d , содержащей
все внутренние точки L (см. рисунок a). 2

Определение
Рассмотрим любую вершину a плоского графа G и
упорядочим выходы ребер из a по часовой стрелке. Два ребра,
выходы которых — соседние в этом порядке, будем называть
соседними в вершине a.

Свойство 4
Пусть ab1 и ab2 — два соседних ребра в вершине a. Тогда
рёбра ab1 и ab2 лежат в границе некоторой грани.

Доказательство. вершины b1 и b2 можно соединить ломаной
вдоль b1ab2, не пересекающей изображения G (см. рисунок b).
Поэтому, рёбра ab1 и ab2 лежат в границе некоторой грани. 2
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• Пусть G — плоский граф, d ∈ F (G ), а x1x2 ∈ Ed .
• Пройдем по ребру x1x2 от x1 к x2. НУО справа по ходу
движения расположена грань d . Повернем в вершине x2
направо до выхода соседнего ребра x2x3. (Если
dG (x2) = 1, то x3 = x1, это нам не мешает.) Очевидно,
x2x3 ∈ Ed . Пойдем по этому ребру от x2 к x3, справа
опять будет расположена грань d . И так далее. В
конечном итоге мы вернемся на ребро x1x2 (в вершину x1
мы можем вернуться и раньше!). Получился замкнутый
циклический маршрут (см. рис. а).
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• Пусть получился циклический маршрут Z = x1x2 . . . xk .
Рассмотрим вершину xi . по построению, Z обходит вокруг xi
— скажем, против часовой стрелки. Пусть мы вышли из
вершины xi по ребру xixi+1, а следующий раз вернулись в эту
вершину по ребру xj−1xj (в этом случае xi = xj , см. рис. b).
• Тогда сектор между выходами рёбер xixi+1 и xjxj−1 из
вершины xi = xj не принадлежит грани d . Следовательно, Z
проходит все рёбра из Ed , инцидентные вершине xi . Поскольку
это верно для любой вершины Z , этот маршрут обходит все
рёбра одной из компонент графа B(d).
• Обозначим через Z (U) такой маршрут для компоненты U, а
через Z (d) — объединение построенных маршрутов для всех
компонент B(d).
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• Если маршрут Z (d) проходит ребро e дважды, то,
очевидно, в разных направлениях. Значит, по обе
стороны от e расположена грань d , то есть e —
внутреннее ребро d .
• Пусть e — внутреннее ребро грани d (см. ребро
x2x3 = x6x7 на рисунке). Тогда при проходе по e в любом
из направлений справа будет расположена грань d .
Поэтому, маршрут Z (d) дважды пройдет e — в обоих
направлениях.
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Лемма 1
Для плоского графа G выполнены следующие
утверждения.
1) Если d ∈ F (G ) и B(d) несвязна, то разные
компоненты связности графа B(d) лежат в разных
компонентах связности графа G .
2) Граф G несвязен, если и только если он имеет грань с
несвязной границей.
Доказательство. 1) • Пусть B1 и B2 — две компоненты
B(d). Изображение компоненты B1 ограничено и не
пересекает других компонент B(d). Следовательно,
изображение B1 можно отделить от изображения B2
замкнутой ломаной в грани d , не пересекающей ребер G
(такую ломаную можно построить, почти повторив
маршрут Z (B1): вместо каждого прохода по ребру,
проведем его копию на малом расстоянии δ в грани d ,
как в доказательстве теоремы Жордана).
• Значит, между B1 и B2 нет пути в графе G .
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2) Очевидно, можно обойти все грани графа G , каждый
раз переходя в грань имеющую с предыдущей общую
сторону или вершину (достаточно отметить по
внутренней точке на каждой грани и проложить на
плоскости маршрут, все эти точки обходящий).
• Тогда, если граница каждой грани связна, то связно и
их объединение, а это граф G , противоречие. Значит,
несвязный граф имеет грань с несвязной границей.
• Если G имеет грань с несвязной границей, то G
несвязен по пункту 1. 2
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Лемма 2
Внутренние рёбра граней плоского графа G — в точности
все мосты графа G .
Доказательство. • Пусть внутреннее ребро e грани d — не
мост, тогда оно лежит в простом цикле C . По теореме
Жордана цикл делит плоскость на две области, а грань d
может лежать только в одной из них.
• Наоборот, пусть e = ab — мост. Тогда граф G − e имеет
две компоненты Ga и Gb, содержащие a и b
соответственно.
• Изображение компоненты Ga ограничено и не
пересекает Gb, значит, существует замкнутая ломаная P в
грани d , отделяющая Ga от Gb (см. рис. a). Очевидно, P
пересекает ребро e, а значит, по обе стороны от моста e
расположена одна и та же грань. 2
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Лемма 3
Пусть d — грань реберно двусвязного графа G . Тогда B(d) —
цикл (не обязательно простой).

Доказательство. • Так как G связен, B(d) — связный граф по
Лемме 1. Значит, и Z (d) связен. Так как внутренних рёбер у d
нет (граф не имеет мостов), Z (d) — цикл. 2

• Докажем, что граница грани почти всегда однозначно задает
эту грань.

Лемма 4
Если две разные грани f и f ′ плоского графа G имеют
одинаковые границы, то G — простой цикл.

Доказательство. • Пусть B — общая граница этих граней,
e ∈ E (B). По Лемме 2 тогда e — не мост графа G , а значит,
существует простой цикл Z , содержащий e.
• Тогда Z делит плоскость на две области — O ⊃ f и O ′ ⊃ f ′.
• Пусть e′ ∈ B \ Z . Тогда e′ лежит внутри одной из областей
O и O ′ — скажем, в O ′. В этом случае, e′ не может быть
граничным ребром грани f ⊂ O, противоречие.
• Следовательно, B ⊂ Z .
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• Докажем, что G = Z , тогда G — простой цикл.
• Если f = O и f ′ = O ′, то G = Z , что нам и нужно.
• Пусть, скажем, f ̸= O.
• Так как каждая грань целиком лежит в одной из областей,
O разбивается на грани.
• Значит, существует еще одна грань f ∗ ⊂ O.
• Пусть X ∈ f и X ∗ ∈ f ∗.
• Так как точки X и X ∗ лежат в области O, их можно
соединить ломаной L, проходящей в O.
• Пойдем по ломаной L от точки X . В некоторый момент мы
перейдем из f в другую грань. Значит, мы пересечем
изображение графа G — скажем, ребро e.
• Тогда e — граничное ребро грани f . Но при этом e
изображено внутри O (там проходит ломаная L),
следовательно, e /∈ E (Z ). Противоречие с доказанным выше.
2
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Лемма 5
Пусть G — плоский граф.
1) Если грань d и ее граничная вершина a таковы, что B1
и B2 — разные компоненты графа B(d)− a, то B1 и B2
лежат в разных компонентах графа G − a. В частности, a
— точка сочленения графа G .
2) Граф G без петель вершинно двусвязен, если и только
если границы его граней — простые циклы.
Доказательство. 1) Аналогично доказательству Леммы 1,
плоское изображение B1 можно отделить от изображения
B2 ломаной, не пересекающей ребер G − a (см. рис. b), а
значит, между B1 и B2 нет рёбер в графе G − a.
• Следовательно, a — точка сочленения графа G .
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2) • Пусть a — точка сочленения графа G . Рассмотрим
плоское изображение несвязного графа G − a, полученное из
G удалением вершины a.
• В силу Леммы 1 граф G − a имеет несвязную грань d , а
граф G не имеет. Значит, a лежит на грани d и смежна со
всеми компонентами ее границы.
• Упорядочим выходы ребер из a по часовой стрелке. Тогда
есть два соседних ребра, выходящих к разным компонентам
графа B(d) — скажем, ребро ab1 к компоненте B1 и ребро ab2
к компоненте B2 (см. рис. c).
• Точка сочленения a отделяет b1 от b2 в графе G .
Существует грань f графа G , граница которой содержит a, b1
и b2. Тогда a — точка сочленения B(f ).
• Наоборот, если грань d такова, что B(d) имеет точку
сочленения, то по пункту 1 граф G также имеет точку
сочленения. 2
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Грани трёхсвязного графа

Определение
• Цикл C графа G — неразделяющий, если
граф G − V (C ) связен.
• Цикл C — индуцированный, если он не имеет хорд (то
есть, является индуцированным подграфом на своем
множестве вершин).

Лемма 6
Пусть G — трёхсвязный плоский граф. Тогда множество
границ его граней есть в точности множество его
неразделяющих индуцированных циклов.
Доказательство. ⊃. Пусть C — неразделяющий
индуцированный цикл в G . Тогда в одной из областей, на
которые C делит плоскость — назовём ее d — нет вершин
графа G . Так как индуцированный цикл C не имеет
диагоналей, внутри d рёбер тоже нет. Значит d — грань,
а цикл C — её граница.
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⊂. • Пусть C — граница грани d графа G . Тогда C —
простой цикл.
• Предположим, что C имеет диагональ xy . Вершины x
и y делят цикл C на две дуги C1 и C2.
• Граф G − x − y должен быть связен ввиду
трёхсвязности графа G . Значит, в G − x − y есть
C1C2-путь P .
• Понятно, что и диагональ xy , и путь P должны
проходить вне грани d , но тогда они пересекаются (см.
рис. а), что невозможно.
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• Докажем, что граф G − V (C ) связен.
• Пусть u, v ∈ V (G ) \ V (C ). По теореме Уитни в
трёхсвязном графе G существуют три независимых
uv -пути P1, P2 и P3, которые делят плоскость на три
области.
• Грань d лежит в одной из этих областей, пусть это
область, граница которой образована путями P2 и P3 (см.
рис. b). Тогда P1 не пересекаетcя с границей грани d —
циклом C — а значит, вершины u и v связаны
в G − V (C ).
• Таким образом, граница грани графа G является
индуцированным неразделяющим циклом. 2
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Разные изображения одного графа. Изоморфизм
• Слева и справа на рисунке — плоские изображения
одного и того же графа. Но это разные изображения! У
правого изображения есть грань, в границе которой 6
вершин, а у левого — нет.
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Определение
Пусть G и G ′ — два плоских графа, а биекция
φ : V (G ) → V (G ′) удовлетворяет следующим условиям.
(1) xy ∈ E (G ) ⇐⇒ φ(x)φ(y) ∈ E (G ′);
(2) U ⊂ V (G ) является множеством граничных вершин
некоторой грани графа G , если и только если
φ(U) = {φ(x) : x ∈ U} является множеством граничных
вершин некоторой грани графа G ′.
Тогда φ — изоморфизм плоских графов G и G ′, а сами
эти плоские графы изоморфны.
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Теорема 2
(H.Whitney, 1933.) Любые два плоских изображения
трёхсвязного планарного графа G изоморфны как плоские
графы.
Доказательство. • Пусть G1 и G2 плоские изображения G ,
причем x1 ∈ V (G1) и x2 ∈ V (G2) — изображения вершины
x ∈ V (G ).
• Определим отображение φ : V (G1) → V (G2) так: φ(x1) = x2
для любой вершины x1 ∈ V (G1). Очевидно, x1y1 ∈ E (G1) ⇐⇒
xy ∈ E (G ) ⇐⇒ φ(x1)φ(y1) = x2y2 ∈ E (G2).
• По Лемме 6 границы граней плоского графа G1 — это в
точности неразделяющие индуцированные циклы графа G1, а
границы граней плоского графа G2 — это в точности
неразделяющие индуцированные циклы G2. Это свойство не
имеет отношения к плоскому изображению.
• U1 ⊂ V (G1) — множество вершин неразделяющего
индуцированного цикла в G1 (то есть, границы грани G1)
⇐⇒ U ⊂ V (G ) множество вершин неразделяющего
индуцированного цикла в G ⇐⇒ φ(U1) = U2 ⊂ V (G2) —
множество вершин неразделяющего индуцированного цикла в
G2 (то есть, границы грани G2).
• Следовательно, φ — изоморфизм плоских графов. 2
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Формула Эйлера
• В разных плоских изображениях планарного графа G могут
получаться разные грани. Однако их количество является
инвариантом графа, как говорит нам формула Эйлера.

Теорема 3
(L. Euler, 1752.) Пусть G — плоский граф с v вершинами, e
рёбрами и f гранями, имеющий k компонент связности. Тогда
v − e + f = 1 + k .
Доказательство. Индукцией по количеству рёбер.
База для случая, когда граф G — лес, очевидна: в этом
случае f = 1, e = v − k .
Переход • Пусть для меньших графов формула Эйлера уже
доказана и G — не лес.
• Тогда в графе есть цикл, пусть ребро ℓ входит в цикл. Так
как ℓ — не мост, по ребру ℓ граничат две разные грани,
которые объединяются в одну в графе G − ℓ.
• Таким образом, в графе G − ℓ v вершин, k компонент, e − 1
ребро и f − 1 грань. Теперь формула Эйлера для G следует из
формулы Эйлера для G − ℓ, которая верна по индукционному
предположению. 2
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• Мы будем обозначать количество вершин, рёбер и граней
плоского графа G буквами v , e и f соответственно.

Следствие 1
Пусть G — планарный граф без петель и кратных рёбер,
v ≥ 3. Тогда выполняются следующие утверждения.
1) e ≤ 3v − 6.
2) Если граф G — двудольный, то e ≤ 2v − 4.
Доказательство. 1) • Докажем, что размер границы каждой
грани графа G не менее 3. В самом деле, пусть d ∈ F (G ),
b(d) ≤ 2.
• Так как петель и кратных рёбер нет, B(d) не имеет циклов.
Следовательно, все рёбра внутренние. Тогда такое ребро всего
одно, а значит, e = 1 и утверждение очевидно.
• Сумма размеров границ всех граней равна 2e, а размер
каждой границы не менее 3. Следовательно, 2e ≥ 3f или
f ≤ 2e

3 .

• Тогда из формулы Эйлера v − e
3 = v − e+ 2e

3 ≥ v − e+ f ≥ 2,
откуда следует доказываемое неравенство.
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2) • Докажем, что размер границы каждой грани
двудольного графа G не менее 4.
• В самом деле, пусть d ∈ F (G ), b(d) ≤ 3. Поскольку в
двудольном графе нет циклов длины 3, и в G нет
кратных рёбер, все рёбра внутренние. Тогда такое ребро
всего одно, а значит, e = 1 и утверждение очевидно.
• Сумма размеров границ всех граней равна 2e, а размер
каждой границы не менее 4. Следовательно, f ≤ e

2 .
• Тогда из формулы Эйлера
v − e

2 = v − e + e
2 ≥ v − e + f ≥ 2, откуда следует

доказываемое неравенство. 2

Следствие 2
Пусть G — планарный граф без петель и кратных рёбер.
Тогда δ(G ) ≤ 5.
Доказательство. • В случае v ≤ 2 утверждение очевидно.
• Пусть v ≥ 3 и при этом δ(G ) ≥ 6. Тогда 6v ≤ 2e, то
есть, e ≥ 3v — противоречие со Следствием 1. 2
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Следствие 3
K5 и K3,3 — непланарные графы.
Доказательство. 1) Пусть K5 планарен. Для этого графа
v = 5, e = 10. По пункту 1 следствия 1 мы имеем
10 = e ≤ 3v − 6 = 9, что неверно.
2) Пусть K3,3 планарен. Для этого двудольного графа
v = 6, e = 9. По пункту 2 следствия 1 мы имеем
9 = e ≤ 2v − 4 = 8, что неверно. 2
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Определение
• Граф H ′ называется подразбиением графа H, если H ′ может
быть получен из H заменой некоторых рёбер на простые пути
(каждое заменяемое ребро xy меняется на простой xy -путь).
При этом, все добавлямые вершины различны и имеют
степень 2.
• Вершины H в графе H ′ называются главными.
• G ⊃ H означает, что граф G имеет подграф, изоморфный
подразбиению графа H.

Следствие 4
1) Подразбиение графа H планарно, если и только если H
планарен.
2) Любое подразбиение графа K5 или K3,3 непланарно.
Доказательство. 1) Изображение как ребра, так и простого
пути — ломаная.
2) Следует из пункта 1 и Следствия 3. 2
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Лемма 7
Пусть x , y ∈ V (G ), xy ∈ E (G ). Тогда выполняются следующие
утверждения.
1) Если G · xy ⊃ K3,3, то G ⊃ K3,3.
2) Если G · xy ⊃ K5, то G ⊃ K5 или G ⊃ K3,3.

Доказательство. • Пусть w = x · y , а H — подграф G · xy ,
являющийся подразбиением K3,3 или K5.
• Если w ̸∈ V (H) то, очевидно, G ⊃ K3,3 или G ⊃ K5,
соответственно.
• Далее w ∈ V (H). Построим подграф H ′ графа G
следующим образом: V (H ′) = V (H) \ {w} ∪ {x , y}. Все рёбра
из E (H), не инцидентные w , включим в E (H ′). Для каждого
ребра aw ∈ E (H) включим его в E (H ′) то из ребер ax или ay ,
которое есть в графе G (если есть оба этих ребра, возьмем
любое из них). Наконец, поместим в E (H ′) ребро xy .
• Рёбра графа H ′ − xy , инцидентные вершине x , назовем
красными, а рёбра графа H ′ − xy , инцидентные вершине y —
синими. Вместе красных и синих рёбер ровно dH(w).
• Если в графе H ′ нет синих рёбер, то H ′ − y — подграф
графа G , изоморфный H. Аналогично для красных рёбер. В
этом случае доказательство леммы закончено.
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• Пусть ay — единственное синее ребро в H ′. Тогда ребру
aw ∈ E (H) соответствует путь ayx в графе H ′, то есть, H ′

является подразбиением графа H (см. рис. а). В этом случае
лемма доказана, аналогично для случая, когда есть ровно
одно красное ребро.
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• Пусть теперь и красных, и синих рёбер не менее, чем по два.
Тогда dH(w) ≥ 4, откуда сразу же следует, что H ⊃ K5,
dH(w) = 4.
• Пусть тогда z1, z2, z3, z4 — четыре оставшиеся главные
вершины графа H. Каждая пара из вершин w , z1, z2, z3, z4
соединена в H путём — подразбиением соответствующего
ребра графа K5. Разные пути не имеют общих внутренних
вершин. Этим путям соответствуют пути в графе H ′.
• НУО в H ′ есть xz1-путь, xz2-путь, yz3-путь и yz4-путь (см.
рис. b). Тогда H ′ ⊃ K3,3: каждая из вершин x , z3, z4 соединена
путём с каждой из вершин y , z1, z2, разные пути не имеют
общих внутренних вершин. 2
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Теорема 4
(K. Kuratowski, 1930) Граф G (возможно, имеющий кратные
рёбра и петли) непланарен, если и только если G имеет
подграф, являющийся подразбиением K5 или K3,3.

Доказательство. ⇐. Следствие 4.
⇒. • Предположим противное и рассмотрим минимальный
контрпример G (непланарный граф, не содержащий
подразбиений K5 и K3,3).
• Любой не содержащий подразбиений K5 и K3,3 граф с
меньшим чем G числом вершин или с таким же, как у G
числом вершин и меньшим числом рёбер обязательно
является планарным.

Утверждение 1
G не имеет петель и кратных рёбер.

Доказательство. • Пусть e — петля графа G . Тогда граф G − e
планарен и из его планарности следует планарность графа G
(можно дорисовать петлю к плоскому изображению G − e).
• Теперь пусть G имеет два кратных ребра e и f . Тогда граф
G − e планарен и из его планарности следует планарность
графа G (можно дорисовать ребро e вдоль ребра f в плоском
изображении G − e). 2
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Утверждение 2
G трехсвязен.

Доказательство. • Если G несвязен, то его компоненты
не содержат подразбиений K5 и K3,3, а значит, планарны.
Тогда планарен и граф G , противоречие.
• Пусть G имеет точку сочленения a. Тогда G = G1 ∪ G2,
где V (G1) ∩ V (G2) = {a}.
• Графы G1 и G2 не содержат подразбиений K5 и K3,3, а
значит, планарны.
• Тогда планарен и граф G (можно изобразить G1 и G2
так, чтобы a оказалась на границе внешней грани обоих
изображений и склеить их, см. рисунок a). Противоречие.
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• Наконец, пусть G двусвязен, но имеет разделяющее
множество S = {a, b}. Тогда G = G1 ∪ G2, где
V (G1) ∩ V (G2) = S . Пусть G ′

i = Gi + ab.
• Предположим, что G ′

1 содержит подграф H —
подразбиение графа K5 или K3,3. Так как H не может
быть подграфом G , ab ∈ E (H) \ E (G ).
• Однако, G содержит ab-путь P по вершинам G2.
Заменив в H ребро ab на путь P , мы получим
подразбиение H ′ графа H, являющееся подграфом G .
Тогда G содержит подразбиение K5 или K3,3, что не так.
• Таким образом, G ′

1 не содержит подразбиений K5 и
K3,3, а значит, G ′

1 планарен. Аналогично, G ′
2 планарен.

• Тогда можно изобразить эти графы на плоскости так,
чтобы ребро ab в обоих изображениях лежало в границах
внешних граней и склеить эти изображения (см. рис. b).
Противоречие. 2
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• Вернемся к доказательству теоремы.
• Очевидно, G ̸= K4. По Теореме 4.9 существует такое ребро
xy ∈ E (G ), что граф G · xy трёхсвязен, пусть w = x · y .
• По Лемме 7 мы имеем G · xy ̸⊃ K5, G · xy ̸⊃ K3,3,
следовательно, граф G · xy планарен.
• Пусть G ′ = G · xy − w ≃ G − x − y (изоморфность этих двух
графов очевидна).
• Рассмотрим плоское изображение графа G ′, получающееся
из изображения G · xy удалением вершины w , пусть q — грань
G ′, на которой расположена вершина w .
• Граф G ′ двусвязен, поэтому граница грани q — это простой
цикл Z .
• Отметим на Z вершины, смежные с y (обозначим их
множество через A) и пронумеруем их в циклическом порядке:
a1, a2, . . . , an. Из трёхсвязности G следует, что n ≥ 2. Пусть B
— множество вершин цикла Z , смежных с x .
• Если A = B то n ≥ 3 (так как граф G − A в этом случае
несвязен), тогда G содержит подразбиение K5 с главными
вершинами x , y , a1, a2, a3, противоречие.
• Далее НУО B ̸⊂ A пусть вершина b ∈ B \ A лежит на дуге
L = a1Za2, не содержащей других вершин из A.
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• Предположим, что вершина b′ ∈ B не лежит на L (возможно,
b′ совпадает с одной из вершин множества A, но b′ /∈ {a1, a2}).
• Тогда циклический порядок вершин a1, b, a2, b

′ на Z именно
такой, а значит, G содержит подразбиение K3,3 с главными
вершинами x , a1, a2 (одна доля) и y , b, b′ (вторая доля),
противоречие (см. рис. a).
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• Остается случай, когда все вершины множества B лежат на
дуге L (возможно, совпадают с a1 или a2).
• В этом случае рассмотрим исходное плоское изображение
графа G · xy и удалим с него все ребра от w до вершин из
B \ A (см. рис. b).
• Ребра от A до w делят грань q на n граней, одна из них —
грань d , ограниченная L и ребрами wa1, wa2.
• Мы можем изобразить внутри d вершину x и соединить ее
ребрами с w и вершинами из B, не нарушая планарности (см.
рис. c). Для построения плоского изображения G остается
только переименовать w в y . 2
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Триангуляции

Определение
1) Будем называть грань треугольником, если ее граница —
это треугольник.
2) Плоский граф называется триангуляцией, если каждая его
грань — треугольник. Кратные рёбра и петли запрещены.
3) Триангулировать плоский граф значит провести в нём
дополнительные рёбра так, чтобы получилась триангуляция.
• По Лемме 5 триангуляция — двусвязный граф.

Лемма 8
Пусть G — плоский граф без петель, v(G ) ≥ 3, никакие два
кратных ребра не образуют грань. Тогда G можно
триангулировать без появления новых пар кратных ребер.
Доказательство. • Пусть G — не триангуляция. Тогда G имеет
грань d , не являющуюся треугольником. Пусть H = G (Vd).
• По Лемме 1 любые две вершины из Vd можно соединить
ломаной в d , эта ломаная не будет пересекать ребер графа G .
• Значит, если граф H неполный, то мы можем добавить в
него ребро без образования новых пар кратных ребер.
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• Пусть H = Km. Так как |Vd | ≥ 3 и граф H планарен,
m ∈ {3, 4}.
• Если граница B(d) грани d недвусвязна, то ее точка
сочленения по Лемме 5 — точка сочленения графа G , но это
невозможно в случае, когда Vd — клика.
• Следовательно, B(d) — двусвязный граф, а значит, это
простой цикл.
• Так как B(d) — не треугольник, это цикл длины 4. Тогда две
диагонали этого цикла проведены вне грани f , что, очевидно,
невозможно: такие диагонали пересекут друг друга (см.
рисунок). 2

b

b

b

bd

?bc

• Пусть у триангуляции T 2n граней, тогда у нее 3n рёбер. По
формуле Эйлера v = n + 2. Тогда e(T ) = 3v(T )− 6.
• Мы знаем, что для любого плоского графа G выполнено
e(G ) ≤ 3v(G )− 6. Таким образом, триангуляция —
максимальный плоский граф, в котором нельзя дорисовать
без пересечений ни одного нового ребра.
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Лемма 9
В любой триангуляции T с v(T ) ≥ 4 есть ребро e,
входящее ровно в два треугольника — в две грани,
граничащие по e.
Доказательство. • Любое ребро f ∈ E (T ) входит в две
грани, и эти грани граничат только по f (иначе в T есть
пара кратных рёбер). Значит, нам достаточно найти
ребро e, не входящее в разделяющий треугольник —
такой, что в обеих частях плоскости относительно него
есть вершины графа.
• Если в T нет разделяющего треугольника, то
утверждение очевидно — нам подойдет любое ребро.
• Предположим, что разделяющие треугольники есть и
рассмотрим такой разделяющий треугольник abc , что
внутри него нет других разделяющих треугольников.
• Однако, внутри abc есть вершины, а значит, есть и
ребро e. Тогда ребро e не может входит в разделяющий
треугольник, так как такой треугольник содержался бы
внутри abc , что противоречит выбору abc . 2
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Изображение с прямыми рёбрами

Теорема 5
(K.Wagner, 1936.) Пусть G — планарный граф без кратных
рёбер. Тогда существует плоское изображение G , в котором
все рёбра – отрезки.
Доказательство. • Будем доказывать утверждение индукцией
по количеству вершин графа, база для графа на одной
вершине очевидна.
• Достаточно доказать теорему для случая, когда G —
триангуляция, так как по Лемме 8 любой граф можно
триангулировать без появления кратных рёбер. Будем
доказывать, что можно выпрямить триангуляцию, тогда будет
выпрямлен и исходный граф.
• По Лемме 9 выберем ребро e = uv ∈ E (G ) так, чтобы оно
входило ровно в два треугольника — грани xuv и yuv .
• Тогда G ′ = G · uv — триангуляция с плоским изображением,
в котором “сжаты” грани xuv и yuv , а остальные грани —
такие же, как в G . Кратных рёбер в G ′ нет.
• По индукционному предположению, существует изображение
G ′ с прямыми рёбрами. Далее рассматриваем его.
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• Упорядочим вершины из NG (u) в порядке выхода их
рёбер из u по часовой стрелке: x , v , y , a1, . . . , ak . Так как
G – триангуляция, любые две соседние в этом порядке
вершины вместе с u образуют треугольную грань.
• Упорядочим вершины из NG (v) в порядке выхода их
рёбер из v по часовой стрелке: y , u, x , b1, . . . , bm. Так как
G – триангуляция, любые две соседние в этом порядке
вершины вместе с v образуют треугольную грань.
• Тогда в графе G ′ вершины из NG ′(w) будут
упорядочены по часовой стрелке в порядке выходов рёбер
из w так: y , a1, . . . , ak , x , b1, . . . , bm (рис. a). Любые две
соседние (по выходу ребра из w) вершины образуют
вместе с w треугольную грань.
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• Найдем минимум расстояний между вершинами в G ′, а
также минимум расстояний от вершин до не инцидентных
им рёбер (напомним, что рёбра — это отрезки). Пусть d
— наименьший из этих минимумов. Очевидно, d > 0.
• Проведем окружность S радиуса δ = d

2 с центром w .
Понятно, что внутри S вершин графа G ′ нет и
пересекают эту окружность только рёбра с концом в w .
• Ломаная xwy делит многоугольник
P = ya1 . . . akxb1 . . . bm на два многоугольника: Pa,
содержащий a1, . . . , ak и Pb, содержащий b1, . . . , bm.
• Проведем диаметр uv окружности S так, чтобы x и y
лежали по разную сторону от соответствующей прямой и
u лежала в Pa (тогда v лежит в Pb, см. рис. b).
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• Удалим все рёбра, инцидентные w , из графа. Теперь
проведем отрезки от u до x , y , a1,. . . , ak и от v до x , y ,
b1,. . . , bm (см. рис. b). Очевидно, никакие два
проведенных отрезка не пересекают друг друга.
• Остается доказать, что проведенные отрезки не
пересекают других рёбер графа G .
• Пусть, скажем, ребро us пересекает какое-то другое
ребро e (см. рис. c). Стороны sw и wu треугольника swu
не могут пересекать e. Следовательно, один из концов e
— назовем его t — лежит в треугольнике swu. Но тогда t
лежит в треугольнике swu и расстояние от t до отрезка
sw , очевидно, меньше |uw | = d

2 , противоречие. 2
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Лемма 10
Пусть G — связный плоский граф, d ∈ F (G ), Пусть
k = b(d), а e1 . . . ek — рёбра из Ed в порядке
циклического обхода Z (d) (нумерация — циклическая по
модулю k , внутренние рёбра грани d встречаются в этой
нумерации дважды).
Отметим точку d∗ на грани d и по точке si на каждом
ребре ei . Тогда в грани d можно провести ломаные
L1, . . . , Lk без общих внутренних точек, соединяющие d∗ с
s1, . . . , sk соответственно. При этом, циклический порядок
выходов ломаных в точке d∗ будет L1, . . . , Lk (см. рис. a).
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Доказательство. Рассмотрим отдельно от всего графа
грань d и добавим вершины s1, . . . , sk , d

∗.



Теория графов.
Глава 6.

Планарные
графы.

Д. В. Карпов

• Внутреннюю точку d∗ грани d можно соединить ломаной L1
в грани d с точкой s1 на границе грани. Далее пусть k ≥ 2.
• Так как добавленное ребро L1 = d∗s1 — мост, это внутреннее
ребро полученной грани d0, в границу которой добавилась
вершина d∗.
• Пусть vi,i+1 — вершина, в которой обход Z (d) переходит с
ребра ei на ребро ei+1.
• Докажем индукцией по 2 ≤ ℓ ≤ k , что можно провести в
грани d описанные выше ломаные L1, L2, . . . , Lℓ так, что грань
d будет разбита на грани d1,2, . . . , dℓ,1, причем границу di,i+1
образуют ломаные Li и Li+1, а также участок циклического
обхода Z (d) между si и si+1, содержащий vi,i+1. Границу грани
dℓ,1 образуют ломаные Lℓ и L1, а также участок циклического
обхода Z (d) между sℓ и s1, содержащий vℓ,ℓ+1.
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База для ℓ = 2 очевидна — в грани d0 можно провести
ломаную L2, соединяющую граничные точки d∗ и s2. В
результате ломаная L2L1 разобьет d на две части d1,2 и
d2,1, очевидно, обладающие нужными свойствами.
Переход ℓ → ℓ+ 1. Рассмотрим грань dℓ,1. На ее границе
лежат точки d∗ и sℓ+1, которые можно соединить в грани
dℓ,1 ломаной Li+1 (см. рис. b). В результате грань dℓ,1
будет разбита этой ломаной на две грани dℓ,ℓ+1 и dℓ+1,1 с
нужными свойствами. 2
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Двойственный граф
• Пусть G — связный плоский граф. Вершины двойственного
графа G∗ будут соответствовать граням графа G : внутри
каждой грани a графа G мы отметим соответствующую ей
вершину a∗ графа G∗. Будем говорить, что вершина a∗

двойственна грани a.
• Зафиксируем на каждом ребре графа G по точке, которую
назовём серединой этого ребра. Точку a∗ можно соединить
внутри грани a непересекающимися ломаными с серединами
всех входящих в границу грани a рёбер, как описано в
Лемме 10 (см. рис.). Сделаем так для каждой грани графа G .
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• Пусть e ∈ E (G ) — ребро, по которому граничат две грани a
и b графа G (возможно, a = b). Ему будет соответствовать
ребро e∗ двойственного графа G∗, соединяющее двойственные
граням a и b вершины a∗ и b∗ и проходящее через середину
ребра e. Назовём ребро e∗ двойственным к e.
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• Если грани a и b совпадают (или, что равносильно,
ребро e — мост), то e∗ — петля.
• Вершины a∗, b∗ ∈ V (G ∗) оказываются соединены таким
количеством рёбер, сколько общих рёбер имеют границы
граней a и b.
• Таким образом, существует естественная биекция
между рёбрами G и рёбрами G ∗ (каждому ребру графа G
ставится в соответствие двойственное). Следовательно,
e(G ) = e(G ∗).
• Граф G ∗ зависит не только от графа G , но и от
изображения этого графа на плоскости, потому мы
определяем G ∗ для плоского графа G . Для разных
плоских изображений одного планарного графа могут
получиться неизоморфные двойственные графы.
• Двойственный граф не зависит ни от того, какие точки
мы выберем внутри граней исходного графа G , ни от
того, какие точки мы назовем серединами рёбер.
Нетрудно доказать, что получатся изоморфные плоские
графы.
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• Итак, вершины графа G∗ соответствуют граням графа G , а
рёбра графа G∗ соответствуют рёбрам графа G . Чему в G
соответствуют грани G∗?

Лемма 11
Пусть G — связный плоский граф. Тогда существует биекция
между V (G ) и F (G∗), которая ставит в соответствии каждой
вершине a ∈ V (G ) грань a∗ ∈ F (G∗), содержащую a.
Доказательство. • Рассмотрим грань a∗ ∈ F (G∗) и докажем,
что на ней изображена хотя бы одна вершина графа G .
• Рассмотрим ребро e∗ ∈ Ea∗ . По построению его пересекает
ребро e графа G . Следовательно, часть изображения ребра e
лежит в грани a∗. По построению e пересекает ровно одно
ребро графа G∗ и ровно один раз, следовательно, хотя бы
один конец e (а это вершина графа G ) лежит в a∗.
• Нам известно, что f (G ) = v(G∗), e(G ) = e(G∗). По формуле
Эйлера, v(G ) + f (G )− e(G ) = 2 = v(G∗) + f (G∗)− e(G∗),
откуда следует, что f (G∗) = v(G ).
• Значит, на каждой грани a∗ плоского графа G∗ лежит ровно
одна вершина графа G , которую мы и обозначим через a. 2

В обозначениях Леммы 11 мы будем говорить, что вершина
a ∈ V (G ) и грань a∗ ∈ F (G∗) двойственны друг другу.
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Лемма 12
Пусть G — связный плоский граф. Тогда (G∗)∗ ≃ G .

Доказательство. • Отметим на каждой грани a∗ ∈ F (G∗)
двойственную ей вершину a ∈ V (G ) (это можно сделать по
Лемме 11). На каждом ребре e∗ ∈ E (G∗) отметим в качестве
середины как раз ту точку, что была использована при
построении G∗.
• После этого от каждой вершин графа G проведем
“половинки” инцидентных ей ребер из E (G ), как раз до их
середин. В результате будут в точности проведены ребра
графа G , как на исходном изображении. Получится граф G .
• Итак, на каждой грани a∗ ∈ F (G∗) отмечена ровно одна
вершина, которая соединена с некоторыми серединами ребер
из E (G∗) непересекающимися ломаными так, что для каждого
ребра e∗ ∈ E (G∗) проведено двойственное ребро e ∈ E (G ).
• Следовательно, от точки a на грани a∗ ∈ G∗ проведены
ломаные до всех середин ребер из B(a∗), причем до
граничных ребер — c одной, а до внутренних — с обеих
сторон. Таким образом, построеннный граф G — это
двойственный граф (G∗)∗.
• Так как построение двойственного графа не зависит от
выбора точек на гранях и середин ребер, (G∗)∗ ≃ G . 2
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Раскраски карт
• Карта — связный плоский граф без мостов. Его грани
иногда называют странами.
• Раскраска граней плоского графа G называется
правильной, если две грани, имеющие общее ребро,
покрашены в разные цвета.
• Для плоского графа G мы будем обозначать через
χ∗(G ) минимальное количество цветов, для которого
существует правильная раскраска граней графа G .
• Нетрудно понять, что правильные раскраски граней
плоского графа G взаимно однозначно соответствуют
правильным раскраскам вершин двойственного графа G ∗.
Поэтому χ∗(G ) = χ(G ∗) и χ(G ) = χ∗(G ∗).
• Гипотеза четырёх красок. (F. Guthrie, 1852.)
Страны любой карты можно правильным образом
покрасить в 4 цвета.
• 4CC эквивалентна следующему утверждению: χ(G ) ≤ 4
для любого планарного графа G без петель.
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Теорема о 5 красках

Теорема 6
(F. Kempe, 1879.) Для любого планарного графа G без
петель χ(G ) ≤ 5.
Доказательство. • Индукция по v(G ), база для случая
v(G ) ≤ 5 очевидна. По Cледствию 2 граф G имеет
вершину a степени не более 5.
• Граф G − a также планарен и по индукционному
предположению мы знаем, что χ(G − a) ≤ 5. Пусть ρ —
правильная раскраска вершин G − a в 5 цветов.
• Если вершины из NG (a) покрашены не более чем в 4
цвета, мы можем докрасить вершину a и получить
правильную раскраску вершин G .
• Остается случай, когда ρ красит NG (a) в 5 цветов.
Тогда dG (a) = 5, пусть NG (a) = {b1, b2, b3, b4, b5},
причем соседи упорядочены по выходу рёбер из a (по
часовой стрелке). Не умаляя общности, можно считать,
что ρ(bi ) = i для всех i ∈ [1..5].
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• Пусть G1,3 — индуцированный подграф G − a на вершинах
цветов 1 и 3, а U — его компонента связности, содержащая b1.
Если во всех вершинах U поменять местами цвета 1 и 3,
раскраска останется правильной, а b1 будет покрашена в
цвет 3.
• Если в новой раскраске невозможно докрасить вершину a, в
ее окрестности должен остаться цвет 1 — но в него может
быть покрашена только вершина b3 и только в случае b3 ∈ U.
• Значит, достаточно рассмотреть случай, когда вершины b1 и
b3 соединены путём P1,3 по вершинам цветов 1 и 3 (см.
рисунок).
• Аналогично, достаточно рассмотреть случай, когда вершины
b2 и b4 соединены путём P2,4 по вершинам цветов 2 и 4. Тогда
пути P1,3 и P2,4 должны пересекаться, что, очевидно,
невозможно. 2
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• В 1880 году Тэйт опубликовал свой подход к доказательству
4CC. Доказательство оказалась неверным, но теорема об
эквивалентной переформулировке 4CC оказалась очень
полезной: в последующих работах авторы доказывали не
собственно 4СС, а эквивалентную переформулировку о
рёберных раскрасках триангуляции.

Определение
Пусть T — триангуляция. Назовём Тэйтовой раскраской
триангуляции T такую раскраску рёбер T в три цвета, что все
рёбра каждой грани разноцветны.

• Далее рассматриваются графы без петель, иначе вопросы о
правильной раскраске вершин бессмысленны.

Теорема 7
(P. G. Tait, 1880.) Четыре утверждения равносильны.
1◦ Для любого плоского графа G выполняется χ(G ) ≤ 4.
2◦ Для любого рёберно двусвязного плоского графа G
выполняется χ∗(G ) ≤ 4.
3◦ Для любого рёберно двусвязного плоского кубического
графа G выполняется χ′(G ) = 3.
4◦ Для любой триангуляции T существует Тэйтова раскраска.
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Доказательство. 1◦ ⇒ 2◦. Рёберно двусвязный граф G не
имеет мостов, следовательно, его двойственный граф G ∗

не имеет петель. Тогда χ∗(G ) = χ(G ∗) ≤ 4.
3◦ ⇒ 4◦. Очевидно, двойственный граф T ∗

триангуляции T является рёберно двусвязным
кубическим графом, а правильная раскраска его рёбер
в 3 цвета — Тэйтовой раскраской рёбер T .
4◦ ⇒ 3◦. Пусть G — кубический рёберно двусвязный
плоский граф. Очевидно, двойственный граф G ∗ —
триангуляция, а Тэйтова раскраска триангуляции G ∗

является правильной раскраской рёбер G в три цвета.
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2◦ ⇒ 3◦. • Пусть G — плоский рёберно двусвязный
кубический граф. У него есть правильная раскраска ρ∗ граней
в 4 цвета. Поскольку всё равно, как нумеровать цвета, мы
будем считать, что ρ∗ принимает значения из
Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
• Так как G — рёберно двусвязный граф, каждое ребро
e ∈ E (G ) разделяет две разные грани a и b. Мы положим
ρ′(e) = ρ∗(a) + ρ∗(b). Так как a ̸= b, то ρ∗(a) ̸= ρ∗(b),
следовательно, ρ′(e) ̸= (0, 0). Таким образом, ρ′ — раскраска
рёбер графа G в три цвета.
• Докажем, что раскраска ρ′ — правильная. Пусть v —
вершина графа G , а a, b, c — три содержащие её грани. Как
уже отмечалось, все эти грани различны, любые две из них
имеют общее ребро.
• Следовательно, ρ∗(a), ρ∗(b) и ρ∗(c) — три разных цвета,
откуда следует, что три цвета инцидентных вершине v рёбер
ρ∗(a) + ρ∗(b), ρ∗(a) + ρ∗(c), ρ∗(b) + ρ∗(c) также различны.
• Таким образом, ρ′ — правильная раскраска рёбер G в 3
цвета.
• Cледовательно, χ′(G ) = 3 (так как очевидно, что χ′(G ) ≥ 3).
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3◦ ⇒ 1◦. • Достаточно рассмотреть связный граф G с
v(G ) ≥ 3. По Лемме 8 граф G является подграфом
триангуляции H.
• Рассмотрим рёберно двусвязный кубический граф H∗.
Cуществует правильная раскраска ρ′ рёбер этого графа в
3 цвета.
• Пусть H∗

i ,j — подграф H∗ на рёбрах цветов
i , j ∈ {1, 2, 3} в раскраске ρ′. Тогда dH∗

i,j
(v) = 2 для любой

вершины v ∈ V (H∗), следовательно, H∗
i ,j — объединение

нескольких циклов.
• Легко видеть, что существует правильная раскраска ρ∗i ,j
граней графа H∗

i ,j в два цвета.
• Рассмотрим произвольную грань a графа H∗.
Пусть a12 — грань H∗

12, частью которой является a,
а a13 — грань H∗

13, частью которой является a (понятно,
что a12 и a13 определены однозначно).
• Положим ρ∗(a) = (ρ∗1,2(a1,2), ρ

∗
1,3(a1,3)).

• Мы получили раскраску граней графа H∗ в четыре
цвета.
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• Рассмотрим имеющие общее ребро e грани a и b графа
H∗, пусть a = a1,2 ∩ a1,3, b = b1,2 ∩ b1,3 — определённые
выше представления в виде пересечений граней.
• Если ρ′(e) ∈ {1, 2}, то a1,2 ̸= b1,2, причём эти грани
графа H∗

1,2 граничат по ребру e, следовательно,
ρ∗1,2(a1,2) ̸= ρ∗1,2(b1,2), а тогда и ρ∗(a) ̸= ρ∗(b).
• Если ρ′(e) = 3, то аналогично ρ∗1,3(a1,3) ̸= ρ∗1,3(b1,3) и
ρ∗(a) ̸= ρ∗(b).
• Таким образом, χ(G ) ≤ χ(H) = χ∗(H∗) ≤ 4, что и
требовалось доказать. 2
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Теорема 8
Пусть G — плоский граф. Тогда χ∗(G ) ≤ 2 если и только если
все вершины G имеют четную степень.

Доказательство. ⇒. Пусть dG (a) = n, упорядочим выходящие
из a ребра в порядке обхода по часовой стрелке: ab1, . . . abn
(нумерация циклическая, некоторые из вершин b1, . . . bn могут
совпадать).
• Как мы знаем, каждая пара соседних ребер abi , abi+1 входит
в границу одной грани — назовем ее fi . Тогда для каждого
i ∈ {1, . . . , n} грани fi и fi+1 — разного цвета, откуда очевидно
следует, что n четно.
⇐. Индукция по числу ребер графа.
Беза для графа без ребер очевидна.
Переход. • Пусть для меньших чем G графов утверждение
доказано.
• Так как все вершины графа G имеют четную степень, в G
есть простой цикл Z .
• Тогда степени всех вершин графа G ′ = G − E (Z ) также
четны, и грани G ′ по индукционному предположению можно
покрасить в два цвета правильным образом.
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• Вернем на изображение цикл Z — он делит плоскость
на две области, внутри и вне цикла.
• Перекрасим все, что внутри Z , наоборот.
• Получится правильная раскраска граней графа G :
любые две грани вне или внутри Z с общим ребром
по-прежнему покрашены в разные цвета.
• Цикл Z разрезал некоторые грани графа G и теперь их
части, граничащие по ребрам Z , покрашены в разные
цвета. 2
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Теорема о 3 красках
• Понятно, что триангуляция — недвудольный граф. А что
можно сказать о раскраске вершин триангуляции в три цвета?
• В 1898 году Хивуд впервые высказал гипотезу о том, что
вершины триангуляции можно правильно покрасить в 3 цвета,
если и только если степени всех ее вершин четны.
• Это было доказано лишь много лет спустя.

Теорема 9
(Л.И. Головина, И. М. Яглом, 1961.) Пусть T — плоская
триангуляция. Тогда χ(T ) = 3, если и только если степени
всех вершин T четны.

Доказательство. (Е. Аксенова, 2024.) • Отметим, что для
любой вершины a ∈ T граф T (NT (a)) содержит циклический
маршрут длины dT (a) (так как концы соседних в плоском
изображении рёбер, выходящих из a — различны и смежны).
Обозначим этот циклический маршрут через ZT ,a.
⇒. Пусть вершина a имеет нечетную степень. Тогда ZT ,a

нечетен и для его правильной раскраски нужно задействовать
все три цвета, но в этом случае невозможно покрасить
вершину a.
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⇐. Пусть все вершины T имеют четную степень. Докажем
существование правильной раскраски вершин T в три цвета
индукцией по v(T ).
База для случая v(T ) = 3 очевидна.
Переход. • Пусть v(T ) > 3. Нам нужны две соседних
треугольных грани abc и bcd такие, что a ̸= d и ad /∈ E (T ).
• Предположим, что одна из этих неприятностей с вершинами
a и d случилась. Тогда цикл abd (из двух кратных ребер при
a = d или треугольник при ad ∈ E (T )) делит плоскость на две
части, в одной из них лежит вершина c (см. рисунок а).
• Так как v(T ) > 3, в другой части ребро ab входит в грань
abx . Очевидно x ̸= d (иначе dT (b) = 3 /

... 2, противоречие).
Тогда c ̸= x и cx /∈ E (T ).
• Таким образом, можно считать, что a ̸= d и ad /∈ E (T )
(иначе рассмотрим грани bac и abx).
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• Рассмотрим меньшую триангуляцию T ′ = (T − bc)# ad
(склеиваем вершины a и d в новую вершину w , склеиваем
пары ребер ab и bd , а также ac и cd , см. рисунок b).
• Тогда все степени вершин T ′ четны
(dT ′(ad) = dT (a) + dT (d)− 2, dT ′(b) = dT (b)− 2,
dT ′(c) = dT (c)− 2, а степении остальных вершин в T и T ′

одинаковы).
• По индукционному предположению триангуляция T ′ имеет
правильную раскраску ρ в 3 цвета.
• НУО ρ(w) = 1 и ρ(b) = 2. Перенесем цвета вершин в T и
положим ρ(a) = ρ(d) = 1.
• Остается лишь проверить, что ρ(c) ̸= ρ(b).
• Так как dT (d) четно, от db до dc из d выходит четное число
ребер — скажем, dy1, . . . , dy2k против часовой стрелки. Эти же
ребра выходят в T ′ из вершины ad против часовой стрелки
между wb и wc .
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Д. В. Карпов• Тогда в последовательности вершин b, y1, . . . , y2k , c
каждые две соседние смежны в T ′, и все они имеют в ρ
цвет, отличный от ρ(w) = 1.
• Значит, в этой последовательности чередуются цвета 2
и 3, тогда ρ(c) = 3, что нам и нужно. 2
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