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Определение
Пусть G — множество, и определена · : G × G → G ,
удовлетворяющая следующим условиям.
1) Ассоциативность ∀a, b, c ∈ G (ab)c = a(bc).
2) Нейтральный элемент. ∃e ∈ G такой, что
∀a ∈ G ae = ea = a.
3) Обратный элемент. ∀a ∈ G ∃a−1 ∈ G такой, что
a · a−1 = a−1 · a = e.
4) Коммутативность ∀a, b ∈ G ab = ba.

• Если выполнены условия 1 и 2, то G — полугруппа.
• Если выполнены условия 1, 2 и 3, то G — группа.
• Если выполнены условия 1, 2, 3 и 4, то G — абелева группа
(или, что то же самое, коммутативная группа).

• Операцию в группе можно обозначать как угодно, как
правило, используется символ ·, но это не обязательно.

Определение
Если G и H — группы с одинаковой операцией · и H ⊂ G , то
H — подгруппа G . Обозначение: H < G .
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Свойство 1
Нейтральный элемент единственен

Доказательство. Пусть их два: e1 и e2. Тогда
e1 = e1e2 = e2. □

Свойство 2
Для любого a ∈ G , обратный элемент a−1 единственен.

Доказательство. Пусть a1 и a2 — два обратных элемента
к a ∈ G . Тогда a1a = aa2 = e, откуда
a1 = a1(aa2) = (a1a)a2 = a2. □

Свойство 3
Для любого a ∈ G , (a−1)−1 = a.

Доказательство. Так как aa−1 = a−1a = e, значит, a
является обратным к a−1. По Свойству 2, обратный
элемент единственен. □

Свойство 4
Для любых a, b ∈ G выполнено (ab)−1 = b−1a−1.

Доказательство. b−1a−1ab = abb−1a−1 = e. □
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Лемма 1
Пусть G — группа, H ⊂ G , причем H замкнуто по умножению
и взятию обратного элемента (то есть, ∀a, b ∈ H выполнено
ab ∈ H и a−1 ∈ H). Тогда H < G .

Доказательство. • При выполнении этих условий,
· : H × H → H — ассоциативная операция и для любого
элемента существует обратный.
• Пусть a ∈ H. Тогда a−1 ∈ H ⇒ e = aa−1 ∈ H.
• Значит, H — группа с операцией ·, то есть, H < G . □

Лемма 2
Пусть {Hi}i∈I — множество подгрупп группы G . Тогда
H = ∩

i∈I
Hi — тоже подгруппа группы G .

Доказательство. • Достаточно проверить замкнутость по
умножению и взятию обратного элемента.
• Пусть a, b ∈ H. Тогда для всех i ∈ I мы имеем a, b ∈ Hi .
• Следовательно, для всех i ∈ I мы имеем ab ∈ Hi , откуда
следует, что ab ∈ H.
• Кроме того, для всех i ∈ I мы имеем a−1 ∈ Hi , откуда
следует, что a−1 ∈ H. □
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Подгруппа, порожденная множеством элементов

Определение
Пусть G — группа, M ⊂ G . Тогда
⟨M⟩ :=

{
t1 . . . tn : ∀i ∈ {1, . . . , n} ti ∈ M или t−1

i ∈ M.
}

(n не фиксировано, может быть любым натуральным числом)
— подгруппа, порожденная M.

Лемма 3
Пусть G — группа, M ⊂ G . Тогда:
1) Если подгруппа H < G такова, что M ⊂ H, то и ⟨M⟩ ⊂ H;
2) ⟨M⟩ < G

Доказательство. 1) Поскольку группа G замкнута по
умножению и взятию обратных элементов, ⟨M⟩ ⊂ H. (Из
t−1
i ∈ M ⊂ H следует ti = (t−1

i )−1 ∈ H. Из t1, . . . , tn ∈ H
следует t = t1 . . . tn ∈ H.
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2) • Пусть t, s ∈ ⟨M⟩. Тогда t = t1 . . . tn (где ti ∈ M или
t−1
i ∈ M для всех i) и s = s1 . . . sm (где si ∈ M или
s−1
i ∈ M для всех i).
• Тогда ts = t1 . . . tns1 . . . sm ∈ ⟨M⟩.
• t−1 = t−1

n · · · · · t−1
1 ∈ ⟨M⟩, так как для любого i либо

t−1
i ∈ M, либо (t−1

i )−1 = ti ∈ M.
• По Лемме 1, ⟨M⟩ < G . □
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Система образующих. Циклическая группа

Определение
Пусть G — группа.
1) Если M ⊂ G таково, что ⟨M⟩ = G , то M — система
образующих группы G .
2) Если a ∈ G таково, что {a} — система образующих G
(то есть, ⟨a⟩ = G ), то G — циклическая группа.

Определение
1) Пусть G — группа, a ∈ G . Порядок элемента a
(обозначение: ord(a)) — это наименьшее такое k ∈ N, что
ak = e. Если такого k нет, то ord(a) = ∞.
2) Порядок группы G — это количество ее элементов (то
есть, |G |).
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• Если ord(a) = 1, то очевидно, что a = e.
• Положим a0 = e. Пусть k ∈ N, a ∈ G . Тогда положим
a−k := (a−1)k .

Свойство 1
Для любых k, n ∈ Z выполнено ak+n = akan.

Доказательство. • При k, n ∈ N утверждение очевидно.
как и при 0 ∈ {k , n}.
• Если k , n < 0, то
ak+n = (a−1)|k|+|n| = (a−1)|k|(a−1)|n| = akan.
• Пусть k < 0, n > 0. Тогда akan = a−1 . . . a−1︸ ︷︷ ︸

|k|

· a . . . a︸ ︷︷ ︸
n

.

• При |k | > n после сокращения получится
(a−1)|k|−n = ak+n. При |k | ≤ n после сокращения
получится an−|k| = ak+n.
• Случай k > 0, n < 0 аналогичен. □
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Свойство 2
Для любых k , n ∈ Z выполнено (ak)n = akn.

Доказательство. • При k = 0 или n = 0 утверждение
понятно. При n ∈ N утверждение немедленно следует из
определения степени.
• При k > 0 (ak)−1 =

(
a . . . a︸ ︷︷ ︸

k

)−1
= a−1 . . . a−1︸ ︷︷ ︸

k

= (a−1)k .

• Следовательно, при k > 0 и n < 0 имеем
(ak)n = (ak)−|n| =

(
(ak)−1)|n| = (a−1)k|n| = akn.

• Так как a−k = (a−1)k по определению степени, при
k < 0 аналогично. □
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Лемма 4
Пусть G = ⟨a⟩ — циклическая группа.
1) Если ord(a) = k ∈ N, то G = {a0 = e, a, . . . , ak−1} и все эти
элементы различны.
2) Если ord(a) = ∞, то G = {as : s ∈ Z} и все эти элементы
различны.

Доказательство. • В любом случае, по определению
G = {as : s ∈ Z}.
1) • Докажем, что ∀n ∈ Z мы имеем
an ∈ {e = a0, a, a2, . . . , ak−1}.
• Поделим n на k с остатком: n = qk + r , где 0 ≤ r ≤ k − 1.
Тогда an = (ak)q · ar = ar , что нам и нужно.
• Пусть i , j ∈ {0, . . . , k − 1}. Если ai = aj и, скажем, i > j , то
e = ai (aj)−1 = ai−j . Но i − j < k , противоречие.
2) Если i , j ∈ Z, i > j и ai = aj , то аналогично ai−j = e, а
значит, ord(a) ̸= ∞, противоречие. □

Следствие 1
Для любого a ∈ G выполнено ord(a) = |⟨a⟩|.
• Утверждение напрямую следует из Леммы 4.
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Любая подгруппа циклической группы — циклическая.

Доказательство. • Пусть G = ⟨a⟩, H < G . Если H = {e},
утверждение очевидно. Далее H ̸= {e}.
• Если am ∈ H, то и a−m = (am)−1 ∈ H. Значит, множество
I = {m ∈ N : am ∈ H} непусто.
• Рассмотрим минимальное такое d ∈ I и докажем, что
H = ⟨ad⟩.
• Предположим противное, пусть an ∈ H и n /

... d .
• Поделим n на d с остатком: n = dq + r , 0 < r < d . Тогда
an = adq+r = adq · ar ∈ H.
• Из ad ∈ H следует, что a−dq ∈ H, а значит, и
ar = an · a−dq ∈ H. Но 0 < r < d противоречит выбору d . □

Определение
Циклическая группа из n элементов обозначается Cn.
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Смежные классы

Определение
Пусть G — группа, H < G , a ∈ G .
Левый смежный класс — это aH := {ah : h ∈ H}.
Правый смежный класс — это Ha := {ha : h ∈ H}.

Свойство 1
|H| = |aH| = |Ha|.

Доказательство. Существует биекция φ : H → aH,
заданная формулой φ(h) := ah. Значит, |H| = |aH|.
Аналогично, |H| = |Ha|. □

Свойство 2
b ∈ aH ⇒ a−1b ∈ H.

Доказательство. b ∈ aH ⇒ b = ah, где h ∈ H. Тогда
a−1b = h ∈ H. □
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aH = bH ⇐⇒ a−1b ∈ H.

Доказательство. ⇐. • Из a−1b ∈ H следует, что
∀h ∈ H a−1b · h ∈ H ⇒ bh = a(a−1bh) ∈ aH. Таким
образом, bH ⊂ aH.
• Так как a−1b ∈ H ⇒ b−1a = (a−1b)−1 ∈ H, аналогично
получаем aH ⊂ bH.
⇒. aH = bH ⇒ b ∈ aH ⇒ a−1b ∈ H по Свойству 2. □

Свойство 4
Если aH ∩ bH ̸= ∅, то aH = bH.

Доказательство. • Пусть z ∈ aH ∩ bH. Тогда
z = ah1 = bh2, где h1, h2 ∈ H.
• Следовательно,
b = ah1(h2)

−1 ⇒ a−1b = a−1ah1(h2)
−1 = h1(h2)

−1 ∈ H.
• По Свойствам 2 и 3 имеем aH = bH. □
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Теорема Лагранжа

Определение
Пусть G — группа, H < G . Тогда индекс G по H
(обозначение: (G : H)) — это количество различных
смежных классов aH.
• Если множество смежных классов бесконечно, то
(G : H) = ∞.

Теорема 1
Пусть G — группа, H < G . Тогда:
1) |G | = |H| · (G : H);
2) если G конечна и a ∈ G , то |G | ... ord(a).

Доказательство. 1) • Очевидно, x ∈ G ⇒ x ∈ xH.
• По свойству 4 группа G является объединением
различных непересекающихся смежных классов по
подгруппе H

• Если |H| = ∞ или (G : H) = ∞, то очевидно, и
|G | = ∞.
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• Пусть |H| ∈ N, k := (G : H) ∈ N и G =
k
∪
i=1

aiH, где

ai ∈ G , причем aiH ∩ ajH = ∅ при i ̸= j .
• По Свойству 1 мы имеем |aiH| = |H| для всех
i ∈ {1, . . . , k}, следовательно, |G | = k|H| = (G : H)|H|.
2) • Если a ∈ G , то G имеет циклическую подгруппу ⟨a⟩.
• По пункту 1, |G | ... |⟨a⟩| = ord(a) (последнее равенство —
по Следствию 1). □
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Симметрическая группа

Определение
Пусть n ∈ N, In = {1, . . . , n}.
1) Подстановка — это биекция σ : In → In. Как правило, мы
будем записывать σ как строчку из n чисел: σ(1), σ(2), . . . σ(n)
(на k позиции записывается то число, в которое σ
переводит k).
2) Симметрическая группа Sn состоит из всех подстановок
(в In), групповая операция — композиция.

• Как нам известно, композиция ассоциативна.
• Единичным элементом в Sn будет тождественная
подстановка id (такая, что id(i) = i для всех i ∈ In.
• Так как σ ∈ Sn — биекция, существует обратная биекция
σ−1 : In → In).
• Таким образом, Sn — группа.
• Из курса ДМ нам известно, что |Sn| = n!.
• Если k, n ∈ N, k < n, мы будем считать, что Sk < Sn
(каждую подстановку из Sk отождествим с подстановкой из
Sn, так же переставляющей 1, . . . , k и оставляющей на месте
k + 1, . . . , n).
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Разложение подстановки на независимые циклы

• Пусть σ ∈ Sn. По теореме Лагранжа, n! = |Sn|
... ord(σ).

• Значит, существует такое k ∈ N, что
σk = id ⇐⇒ ∀i ∈ In σ

k(i) = i .
• Тогда для каждого i ∈ In существует такое
минимальное ki ∈ N, что σki (i) = i .
• Таким образом, σ разбивается на независимые циклы
вида i , σ(i), . . . σki−1(i). (каждый элемент под
воздействием σ переходит в следующий, последний
переходит в первый).
• В записи каждого цикла главное — циклический
порядок, начало не имеет значения.
• Пример. n = 9, σ = 643297185 — стандартная запись.
• Разложение на независимые циклы:
σ = (167)(24)(3)(59)(8).
• Часто циклы длины 1 в этой записи опускают. Можно
записать просто σ = (167)(24)(59).
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• Разложение подстановки на независимые циклы позволяет
легко возводить ее в степень.
• Так, подстановка σℓ прокручивает каждый цикл σ ровно ℓ
раз (нужно передвинуться на ℓ ходов по циклу). При этом,
цикл может распадаться на несколько меньших.
• Подстановка σ−1 прокручивает каждый цикл σ в обратном
порядке.
• Пример. Пусть σ = (1678)(243)(59). Тогда
σ2 = (17)(68)(234)(5)(9), σ3 = (1876)(2)(3)(4)(59), а
σ−1 = (1876)(234)(59).

Лемма 6
Пусть σ ∈ Sn раскладывается на независимые циклы длин
m1, . . . ,mk . Тогда ord(σ) = [m1, . . . ,mk ].

Доказательство. • σℓ = id, если и только если каждый
элемент In остается на своем месте.
• Это означает, что каждый цикл длины mi должен
прокрутиться кратное mi число раз, то есть,
∀j ∈ {1, . . . , k} ℓ ... mj .
• ord(σ) по определению — наименьшее такое число ℓ, а это,
очевидно, [m1, . . . ,mk ]. □
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Определение
1) Подстановка σ ∈ Sn называется циклом длины k , если в ее
разложении на независимые циклы есть один цикл длины k , а
все не входящие в него элементы остаются на месте.
2) Транспозиция — это цикл длины 2.

• Транспозиция меняет местами два элемента In, а все
остальные оставляет на месте.

Теорема 2
При n ≥ 2, транспозиции — система образующих Sn.

Доказательство. • Индукцией по 2 ≤ k ≤ n докажем, что
транспозиции порождают подгруппу S ′

k < Sn (все подстановки,
оставляющие на местах числа k + 1, . . . , n). База k = 2
очевидна.
Переход k → k + 1. • Пусть доказано, что каждая подстановка
из S ′

k — произведение нескольких транспозиций.
• Рассмотрим σ ∈ S ′

k+1. Если σ(k + 1) = k + 1, то σ ∈ S ′
k и

утверждение для σ доказано.
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• Пусть σ(i) = k + 1, где 1 ≤ i ≤ k .
• Рассмотрим транспозицию τ = (k + 1, i) и σ′ = στ .
• Тогда σ′(k + 1) = σ(τ(k + 1)) = σ(i) = k + 1.
• Так как и τ , и σ оставляют на местах {k + 2, . . . , n}, σ′ тоже
эти числа оставляет на местах.
• Значит, σ′ ∈ S ′

k и по индукционному предположению
σ′ = τ1 . . . τℓ, где τ1, . . . , τℓ — транспозиции.
• Тогда σ = στ2 = σ′τ = τ1 . . . τℓτ . □

Лемма 7
Пусть σm ∈ Sn — цикл длины m ≥ 2: σm = (a1a2 . . . am). Тогда
σm = (a1a2)(a2a3) . . . (am−1am).

Доказательство. • Индукция по m. База m = 2 очевидна.
Переход k → k + 1. • По индукционному предположению,
(a1a2)(a2a3) . . . (ak−1ak)(akak+1) = (a1a2 . . . ak)(akak+1).
• Цикл σk = (a1a2 . . . ak) действует так: σk(ai ) = ai+1 при
1 ≤ i ≤ k − 1, σk(ak) = a1.
• При домножении на транспозицию (akak+1) мы меняем
местами эти два числа, значит, если σ′ = σk · (akak+1), то
σ′(ai ) = ai+1 при 1 ≤ i ≤ k и σ′(ak+1) = a1.
• Значит, σ′ = σk+1. □
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Четные и нечетные подстановки

Определение
Пусть σ ∈ Sn.
• Инверсия — это такая пара чисел (i , j), что
1 ≤ i < j ≤ n и σ(i) > σ(j).
• Через I (σ) обозначается количество инверсий в
подстановке σ.
• Подстановка σ называется чётной, если I (σ)

... 2 и
нечетной, если I (σ) /

... 2
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Лемма 8
Пусть σ, τ ∈ Sn, причем τ — транспозиция, а σ′ = στ . Тогда
I (σ) ̸≡ I (σ′) (mod 2).

Доказательство. • Пусть τ меняет местами σ(i) и σ(j), где
i < j .
• Подсчитаем четность числа пар индексов, образующих
инверсию ровно в одной из подстановок σ и σ′. Очевидно, в
такой паре должно быть хотя бы одно из чисел i и j .
• Пусть ℓ /∈ {i , j}.
• Если ℓ < i , то пара (ℓ, i) — инверсия в σ ⇐⇒ (ℓ, j) —
инверсия в σ′.
• Если ℓ > j , то пара (ℓ, j) — инверсия в σ ⇐⇒ (ℓ, i) —
инверсия в σ′.
• Пусть i < ℓ < j . Тогда в каждой из пар (ℓ, i) и (ℓ, j) есть
инверсия ровно в одной из подстановок σ и σ′.
• Количества посчитанных выше инверсий в σ и σ′ имеет
одинаковую четность. Осталась только пара (i , j), которая
образует инверсию ровно в одной из подстановок σ и σ′ и
делает общее число инверсий в них разной четности. □



Алгебра. Глава
6. Теория групп

Д. В. Карпов

Свойство 1
Пусть σ = τ1 . . . τk — разложение σ ∈ Sn в произведение
транспозиций. Тогда I (σ) ≡ k (mod 2).

Доказательство. • Отметим, что id — четная
подстановка.
• Так как σ получена домножением id на транспозицию k
раз, четность подстановки меняется в точности k раз по
Лемме 8. □

Свойство 2
Произведение подстановок одной четности четно, а
произведение подстановок разных четностей нечетно.

Доказательство. • Пусть σ, σ′ ∈ Sn, причем σ
представляется как произведение k транспозиций, а σ′ —
как произведение m транспозиций.
• Тогда I (σ) ≡ k (mod 2), I (σ′) ≡ m (mod 2) и
I (σσ′) ≡ k +m (mod 2), откуда следует доказываемое
утверждение. □
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Свойство 3
Цикл длины k — четная подстановка, если и только если k
нечетно.

Доказательство. По Лемме 7, цикл длины k представляется в
виде произведения k − 1 транспозиций. Далее применяем
Свойство 1. □

Свойство 4
Пусть в разложении на независимые циклы подстановки
σ ∈ Sn — k циклов, имеющих длины m1, . . . ,mk (не
обязательно различные). Тогда σ — четная, если и только
если среди чисел m1, . . . ,mk — четное количество четных.

Доказательство. Следует из Свойств 2 и 3 □

Свойство 5
I (σ) ≡ I (σ−1) (mod 2) для любой σ ∈ Sn.

Доказательство. • Рассмотрим разложение на транспозиции
σ = τ1τ2 . . . τk .
• Так как τ−1

i = τi , мы имеем σ−1 = τk . . . τ2τ1.
• По Свойству 1, I (σ) ≡ k ≡ I (σ−1) (mod 2). □
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• An — множество всех четных подстановок.

Теорема 3
При n ≥ 2 выполняется:
1) An < Sn;
2) |An| = n!

2 .

Доказательство. 1) • По Свойству 5, если σ ∈ An, то и
σ−1 ∈ An.
• Пусть σ, σ′ ∈ An. По Свойству 2, σσ′ ∈ An.
• По Лемме 1, An < Sn.
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поровну.
• Определим отображение f : Sn → Sn формулой
f (σ) := σ · (12).
• Отметим, что f (f (σ)) = σ · (12)2 = σ.
• По Лемме 8, подстановки σ и f (σ) всегда разной
четности.
• Пусть An = {σ1, . . . , σk} и f (σ) = σ′. Тогда все
подстановки σ′1, . . . , σ′k — различны и нечетны.
• Если σ′ ∈ Sn — нечетная подстановка, то f (σ′) —
четная и f (f (σ′)) = σ′.
• Следовательно, Sn \ An = {σ′1, . . . , σ′k}.
• Таким образом, |An| = |Sn \ An|, откуда следует, что
|An| = n!

2 . □
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Гомоморфизм групп

Определение
• Пусть G ,H — группы. Отображение f : G → H называется
гомоморфизмом, если ∀ a, b ∈ G f (ab) = f (a)f (b).

Ядро гомоморфизма f — это Ker(f ) = {x ∈ G : f (x) = eH}.

Образ гомоморфизма f — это
Im(f ) = {y ∈ H : ∃x ∈ G : f (x) = y}.

Свойство 1
Если f : G → H гомоморфизм, то f (eG ) = eH .

Доказательство. f (eG ) = f (eG · eG ) = f (eG ) · f (eG ). Умножая
левую и правую части (f (eG ))

−1, получаем f (eG ) = eH . □

Свойство 2
Если f : G → H гомоморфизм, то f (a−1) = (f (a))−1.

Доказательство. • eH = f (eG ) = f (a · a−1) = f (a) · f (a−1).
• Аналогично, f (a−1) · f (a) = eH . Значит, f (a−1) = (f (a))−1. □



Алгебра. Глава
6. Теория групп

Д. В. Карпов

Лемма 9
Пусть G ,H — группы, f : G → H — гомоморфизм групп.
Тогда:
1) Ker(f ) < G .
2) Im(f ) < H.

Доказательство. Достаточно проверить условия из Леммы 1.
1) • Пусть a, b ∈ Ker(f ). Тогда
f (ab) = f (a)f (b) = eH · eH = eH , следовательно, ab ∈ Ker(f ).
• f (a−1) = (f (a))−1 = e−1

H = eH , следовательно, a−1 ∈ Ker(f ).

2) • Пусть y , y ′ ∈ Im(f ), а x , x ′ ∈ G таковы, что f (x) = y и
f (x ′) = y ′.
• Тогда yy ′ = f (x)f (x ′) = f (xx ′) ∈ Im(f ).
• y−1 = (f (x))−1 = f (x−1) ∈ Im(f ). □

Следствие 2
Если f : G → H гомоморфизм, а N < G , то
f (N) = {f (x) : x ∈ N} < H.

Доказательство. • Очевидно, f индуцирует гомоморфизм
f |N : N → H.
• По Лемме 9 мы имеем f (N) = Im(f |N) < H. □
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Типы гомоморфизмов

• G ,H — группы, f : G → H — гомоморфизм групп.
• Если f — инъекция, то f — мономорфизм.
• Если f — сюръекция (то есть, Im(f ) = H), то f
—эпиморфизм.
• Если f — биекция, то f — изоморфизм.
• Изоморфизм = мономорфизм + эпиморфизм.

Лемма 10
Пусть f : G → H — гомоморфизм групп. Тогда f —
мономорфизм, если и только если Ker(f ) = {eG}.

Доказательство. ⇒ • Если f — мономорфизм, то f —
инъекция.
• Пусть a ∈ Ker(f ). Из f (a) = eH = f (eG ) следует, что a = eG
(так как f — инъекция).
⇐ • Пусть f (a) = f (b). Тогда
f (a ·b−1) = f (a) · f (b−1) = f (a) · (f (b))−1 = f (b) · (f (b))−1 = eH .
• Значит, a · b−1 ∈ Ker(f ) = {eG}, откуда a · b−1 = eG и a = b.
Таким образом, f — инъекция, а значит, мономорфизм. □
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Лемма 11
Пусть f : G → H — изоморфизм групп. Тогда и f −1 : H → G
— изоморфизм групп.

Доказательство. • Достаточно доказать, что f −1 —
гомоморфизм (так как отображение, обратное к биекции —
биекция).
• Рассмотрим любые a, b ∈ H.
• Так как f — гомоморфизм,
f (f −1(ab)) = ab = f (f −1(a)) · f (f −1(b)) = f (f −1(a) · f −1(b)).

• Из того, что f — биекция, следует, что
f −1(ab) = f −1(a) · f −1(b). А это и значит, что f −1 —
гомоморфизм групп. □
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Определение
Если существует изоморфизм групп f : G → H, то говорят,
что эти группы изоморфны. Обозначение: G ≃ H.

Теорема 4
≃ — отношение эквивалентности на множестве всех групп.

Доказательство. • Рефлексивность очевидна: тождественное
отображение id : G → G (заданное формулой id(x) = x для
всех x ∈ G ), очевидно, является изоморфизмом.
• Симметричность доказана в Лемме 11.
• Докажем транзитивность. Пусть F ,G ,H — группы, F ≃ G и
G ≃ H.
• Тогда существуют изоморфизмы φ : F → G и ψ : G → H.
Докажем, что их композиция ψφ : F → H (заданная правилом
(ψφ)(a) := ψ(φ(a))) также является изоморфизмом.
• Композиция биекций ψ и φ, очевидно, является биекцией.
• Проверим, что ψφ — гомоморфизм групп:
ψφ(ab) = ψ(φ(ab)) = ψ(φ(a) · φ(b)) = ψ(φ(a)) · ψ(φ(b)) =
(ψφ)(a) · (ψφ)(b). □
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Автоморфизмы группы

Определение
Пусть G группа.
• Автоморфизм группы G — это изоморфизм φ : G → G .
• Множество всех автоморфизмов группы G обозначим
через Aut(G ).

Лемма 12
Aut(G ) — группа относительно композиции.

Доказательство. • Ассоциативность композиции нам
известна.
• Очевидно, тождественное отображение id подходит в
качестве нейтрального элемента.
• Для каждого φ ∈ Aut(G ) по Лемме 11 мы имеем
φ−1 ∈ Aut(G ). □
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Сопряжения

Определение
Пусть G группа, a ∈ G .
• Сопряжение элементом a — это отображение
Ia : G → G , заданное формулой Ia(x) := a−1xa.
• Обозначим через Inn(G ) множество всех сопряжений
группы G .

• Очевидно, Ie = id.
• Если группа G абелева, то ∀a ∈ G Ia = id.



Алгебра. Глава
6. Теория групп

Д. В. КарповЛемма 13
Для любой группы G Inn(G ) < Aut(G ).

Доказательство. • Сначала докажем, что
Inn(G ) ⊂ Aut(G ). Пусть a ∈ G .
• Очевидно, a−1xa = a−1ya ⇐⇒ x = y , поэтому, Ia —
биекция.
• Так как Ia(x)Ia(y) = a−1xaa−1ya = Ia(xy), Ia —
гомоморфизм, а значит, Ia ∈ Aut(G ).
• По Лемме 1, достаточно проверить замкнутость Inn(G )
по умножению и взятию обратного элемента.
• Пусть a, b ∈ G . Тогда
(Ia · Ib)(x) = a−1(b−1xb)a = (ba)−1x(ba) = Iba(x). Таким
образом, Ia · Ib = Iba.
• Теперь для a ∈ G несложно проверить, что
Ia · Ia−1 = Ia−1a = Ie = id и, аналогично, Ia−1 · Ia = id. □
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Нормальные подгруппы

Определение
Пусть G — группа, H < G . Тогда H — нормальная
подгруппа G , если Ia(H) = {Ia(h) : h ∈ H} = H для
любого a ∈ G . Обозначение: H ◁ G .

Лемма 14
Пусть G — группа, H < G . Тогда H ◁ G , если и только
если aH = Ha для любого a ∈ G .

Доказательство. • Пусть a ∈ G . Тогда
Ia(H) = H ⇐⇒ {a−1ha : h ∈ H} = {h : h ∈ H} ⇐⇒
{ha : h ∈ H} = {ah : h ∈ H} ⇐⇒ Ha = aH

(второе равенство множеств получается из первого
умножением на a слева, а это — биекция).
• Поэтому,
H ◁ G ⇐⇒ ∀a ∈ G Ia(H) = H ⇐⇒ ∀a ∈ G aH = Ha. □
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Критерий нормальности

Лемма 15
Пусть G — группа, H < G . Тогда H ◁ G , если и только
если для любых a ∈ G и h ∈ H выполнено Ia(h) ∈ H (или,
что то же самое, Ia(H) ⊂ H).

Доказательство. • По определению,
H ◁ G ⇐⇒ ∀a ∈ G Ia(H) = H.
• Поэтому, ⇒ очевидна.
⇐. • Для любого a ∈ G мы знаем, что Ia(H) ⊂ H.
• Так как a−1 ∈ G , мы знаем и Ia−1(H) ⊂ H. Подействуем
на это включение обратной биекцией Ia:
H = (Ia · Ia−1)(H) = Ia(Ia−1(H)) ⊂ Ia(H).
• Таким образом, для любого a ∈ G мы знаем, что
Ia(H) ⊂ H и H ⊂ Ia(H), то есть, Ia(H) = H. □
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Лемма 16
Пусть G — группа, а {Hi}i∈I — нормальные подгруппы G .
Тогда H = ∩

i∈I
Hi ◁ G .

Доказательство. • Проверим условие из Леммы 15.
• Пусть a ∈ G , h ∈ H. Тогда для любого i ∈ I мы имеем
h ∈ Hi . Так как Hi ◁ G , мы имеем Ia(h) ∈ Hi .
• Таким образом, ∀a ∈ G , ∀h ∈ H Ia(h) ∈ H, откуда
H ◁ G . □

Лемма 17
Пусть G ,H — группы, а f : G → H — гомоморфизм.
Тогда ker(f )◁ G .

Доказательство. • Проверим условие из Леммы 15.
• Пусть x ∈ G , a ∈ ker(f ). Тогда
f (x−1ax) = f (x−1)f (a)f (x) = f (x−1) · eH · f (x) =
f (x−1)f (x) = f (x−1x) = f (eG ) = eH ,
следовательно, x−1ax ∈ ker(f ). □
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Факторгруппа
• Пусть G — группа, H ◁ G . Будем использовать
обозначение a := aH.
• Факторгруппа G/H = {a : a ∈ G}. Умножение
определим так:
a · b := ab.
• Напомним, что для множеств A,B ⊂ G мы используем
обозначение A · B := {ab : a ∈ A, b ∈ B}.
• Если G — группа, а H < G , то нетрудно понять, что
H · H = H (так как умножение не выводит за пределы H
и H · H ⊃ eH = H).

Лемма 18
Пусть G — группа, H ◁ G . Тогда умножение в G/H
определено корректно.

Доказательство. • Так как H ◁ G , для любого b ∈ G мы
имеем bH = Hb.
• Поэтому, a · b = aH · bH = a · (Hb) · H = a · (bH) · H =
ab · (H · H) = abH = ab. □
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Лемма 19
Пусть G — группа, H ◁ G . Тогда G/H — группа.

Доказательство. Ассоциативность умножения: ∀a, b, c ∈ G/H
a · (b · c) = a · bc = abc = ab · c = (a · b) · c .

Нейтральный элемент — это e.
Проверка: e · a = ea = a = ae = a · e.
Обратный элемент: (a)−1 := a−1.

Проверка: a · a−1 = a · a−1 = e и a−1 · a = a−1 · a = e. □

Лемма 20
Пусть G — группа, F ◁ G , H ′ < G/F . Пусть
H = {x ∈ G : x ∈ H ′}. Тогда H < G , причем |H| = |H ′||F |.
Доказательство. • Пусть x , y ∈ H. Тогда x , y ∈ H ′, а значит,
xy = x · y ∈ H ′ (так как H ′ — группа). Следовательно, xy ∈ H.

• Пусть x ∈ H. Тогда x ∈ H ′, а значит, x−1 = (x)−1 ∈ H ′ (так
как H ′ — группа). Следовательно, x−1 ∈ H.
• По Лемме 1, H < G .
• Каждый x ∈ H ′ — это смежный класс xF , содержащий ровно
|F | элементов, и все они при факторизации переходят в x .
Поэтому, |H| = |H ′||F |. □
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Теорема 5
Пусть f : G → H — гомоморфизм групп. Тогда
G/Ker(f ) ≃ Im(f ).

Доказательство. • Зададим отображение
f : G/Ker(f ) → Im(f ) формулой f (a) := f (a).

• Корректность определения f .
• Пусть a, b ∈ G таковы, что a = b. По Свойству 3 смежных
классов, тогда a−1b ∈ ker(f ).
• Следовательно, f (b) = f (b) = f (a · a−1b) = f (a)f (a−1b) =
f (a) · eH = f (a) = f (a).

• f — гомоморфизм групп:
f (a · b) = f (ab) = f (ab) = f (a)f (b) = f (a) · f (b).
• Im(f ) = Im(f ): для любого y ∈ Im(f ) существует такой
x ∈ G , что f (x) = f (x) = y .

• f — монофорфизм. Проверка: пусть a ∈ Ker(f ). Тогда
f (a) = f (a) = eH , следовательно, a ∈ Ker(f ), а значит, a = e.
Таким образом, Ker(f ) = {e}.
• Таким образом, f — изофорфизм, а значит,
G/Ker(f ) ≃ Im(f ). □
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Пусть G — группа, H,F ◁ G , причем F < H. Тогда выполнены
следующие утверждения.
1) F ◁ H.
2) H/F ◁ G/F .
3) G/H ≃ (G/F )/(H/F ).

Доказательство. 1) F ◁ G ⇒ ∀a ∈ G Ia(F ) = F ⇒
⇒ ∀a ∈ H Ia(F ) = F ⇒ F ◁ H.

2) • Из H ◁ G следует, что для любых a ∈ G и h ∈ H
выполнено a−1ha ∈ H.
• Пусть a := aF . Тогда для любых a ∈ G/F и h ∈ H/F

выполнено (a)−1 · h · a = a−1ha ∈ H/F .
• Следовательно, H/F ◁ G/F .

3) • Для a ∈ G положим ã := aH. По Свойству 3 смежных
классов, a = b ⇒ a−1b ∈ F ⇒ a−1b ∈ H ⇒ ã = b̃.
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f (a) := ã.
• Так как из a = b следует, что ã = b̃, определение f
корректно.

• f — гомоморфизм групп:
f (a · b) = f (ab) = ãb = ã · b̃ = f (a)f (b).

• Ker(f ) = H/F . Дoказательство:
•
a ∈ Ker(f ) ⇐⇒ ẽ = f (a) = ã ⇐⇒ a ∈ H ⇐⇒ a ∈ H/F .

• Im(f ) = G/H. Действительно, для любого ã ∈ G/H,
очевидно, a ∈ G/F и f (a) = ã.

• По Теореме 5,
G/H = Im(f ) ≃ (G/F )/Ker(f ) = (G/F )/(H/F ). □
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Определение
Пусть G — группа. Коммутатор элементов a, b ∈ G — это
[a, b] = a−1b−1ab.

Свойство 1
[a, b] = e ⇐⇒ ab = ba (в этом случае говорят, что элементы
a и b коммутируют).

Доказательство. e = a−1b−1ab ⇐⇒ ba = ab. □

Свойство 2
[b, a] = [a, b]−1.

Доказательство. [b, a] · [a, b] = b−1a−1ba · a−1b−1ab = e.
Аналогично, [a, b] · [b, a] = e. □

• Для a, x ∈ G будем применять обозначение
ax := Ix(a) = x−1ax .
• Нетрудно проверить, что (ax)−1 = (a−1)x .

Свойство 3
[a, b]x = [ax , bx ].

Доказательство. [a, b]x = x−1(a−1b−1ab)x =

(x−1a−1x)(x−1b−1x)(x−1ax)(x−1bx) = (a−1)x(b−1)xaxbx =

(ax)−1(bx)−1axbx = [ax , bx ]. □
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Определение
Пусть G — группа. Коммутант [G ,G ] — это подгруппа G ,
порожденная множеством коммутаторов.

Свойство 4
[G ,G ] состоит из всех произведений коммутаторов
элементов G .

Доказательство. • По определению [G ,G ] состоит из всех
произведений вида t1 . . . tn, где каждый ti — коммутатор двух
элементов G , или обратный к такому коммутатору.
• По Свойству 2, обратный элемент к коммутатору также
является коммутатором. □

Свойство 5
[G ,G ]◁ G .

Доказательство. • Пусть x ∈ G , y ∈ [G ,G ]. Тогда
y = [a1, b1] . . . [an, bn], где a1, b1, . . . , an, bn ∈ G .
• Тогда y x = ([a1, b1] . . . [an, bn])

x = [a1, b1]
x . . . [an, bn]

x =

[ax1, b
x
1 ] . . . [a

x
n, b

x
n ] ∈ [G ,G ].

• По Леммe 15, [G ,G ]◁ G . □
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Теорема 7
Пусть G — группа, H ◁ G . Тогда G/H абелева, если и
только если [G ,G ] < H.

Доказательство. • Пусть a := aH.
• Группа G/H абелева, если и только если для любых
a, b ∈ G выполнено a · b = b · a. Преобразуем это условие:
a · b = b · a ⇐⇒ e = [a, b] = [a, b] ⇐⇒ [a, b] ∈ H.
• Таким образом, группа G/H абелева, если и только
если
∀a, b ∈ G [a, b] ∈ H ⇐⇒ [G ,G ] ⊂ H ⇐⇒ [G ,G ] < H. □
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Действие группы на множестве

Определение
Пусть G — группа, M — множество. Отображение
· : G ×M → M называется действием группы G на
множестве M, если выполнены следующие условия:
1) ∀a, b ∈ G , ∀x ∈ M (ab)x = a(bx);
2) ∀x ∈ M ex = x .

Примеры действий.
1) Sn действует на {1, 2, . . . , n}.
2) Если G группа, то Aut(G ) действует на G (здесь G
выступает в качестве множества).
3) Если G группа, то G (как группа) действует на G (как
множестве) левыми умножениями:
∀a ∈ G ∀x ∈ G ax := ax (первое умножение —
действие, а второе — умножение в группе).
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Определение
Пусть группа G действует на множестве M.
1) Орбита элемента x ∈ M — это
⟨x⟩ = {ax : a ∈ G}.
2) Для a ∈ G и N ⊂ M положим aN := {ax : x ∈ N}.
3) Стабилизатор подмножества N ⊂ M — это
St(N) := {a ∈ G : aN = N}.

Свойство 1
Для любого N ⊂ M St(N) < G .

Доказательство. • Достаточно проверить условия из
Леммы 1.
• Пусть a, b ∈ St(N). Тогда (ab)N = a(bN) = aN = N, то
есть, ab ∈ St(N).
• Пусть a ∈ St(N). Тогда
a−1N = a−1(aN) = (a−1a)N = eN = N, то есть,
a−1 ∈ St(N). □
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Свойство 2
Пусть a ∈ G , N ⊂ M. Тогда St(aN) = Ia−1(St(N)).

Доказательство.

x ∈ St(aN) ⇐⇒ (xa)N = x(aN) = aN ⇐⇒
a−1((xa)N) = a−1(aN) ⇐⇒

Ia(x)N = (a−1xa)N = (a−1a)N = eN = N ⇐⇒
Ia(x) ∈ St(N).

• Таким образом, St(aN) = {x : Ia(x) ∈ St(N)} =
{Ia−1(y) : y ∈ St(N)} = Ia−1(St(N)). □
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Свойство 3
Для любого x ∈ M выполнено x ∈ ⟨x⟩.

Доказательство. ex = x ⇒ x ∈ ⟨x⟩. □

Свойство 4
Пусть x , y ∈ M, ⟨x⟩ ∩ ⟨y⟩ ≠ ∅. Тогда ⟨x⟩ = ⟨y⟩.

Доказательство. • Пусть a, b ∈ G таковы, что ax = by .
• Тогда y = (b−1b)y = (b−1a)x , то есть, y ∈ ⟨x⟩.
• Пусть z ∈ ⟨y⟩, тогда z = cy , где c ∈ G и
z = (cb−1a)x ∈ ⟨x⟩
• Таким образом, ⟨y⟩ ⊂ ⟨x⟩. Аналогично, ⟨x⟩ ⊂ ⟨y⟩. □
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Пусть группа G действует на множестве M, а x ∈ M.
Тогда |⟨x⟩| · |St(x)| = |G |.

Доказательство. • Для a, b ∈ G

ax = bx ⇐⇒ (b−1a)x = b−1(ax) = b−1(bx) = x ⇐⇒
b−1a ∈ St(x) ⇐⇒ b · St(x) = a · St(x).
(в последнем равенстве мы воспользовались Свойством 3
смежных классов).
• Таким образом, элементы G , одинаково действующие
на x , образуют смежный класс по подгруппе St(x).
• Следовательно, |⟨x⟩| = (G : St(x)) (количеству
смежных классов по подгруппе St(x)).
• Теперь Теорема 8 следует из Теоремы 1 (теоремы
Лагранжа). □
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Определение
Для любого множества M через SM обозначим группу
всех перестановок множества M (то есть, биекций из M в
M) относительно композиции.

• SM — группа для любого множества M (доказательство
аналогично случаю Sn).
• Если M — конечное множество, то SM ≃ S|M|.

Теорема 9
(A. Cayley.) Любая группа G изоморфна подгруппе
группы SG .

Доказательство. • Для g ∈ G определим отображение
fg : G → G формулой fg (x) := gx .
• Проверим, что fg — биекция:
gx = fg (x) = fg (y) = gy ⇐⇒ x = y (можно умножить
gx = gy слева на g−1).
• Таким образом, fg ∈ SG .
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• Определим отображение f : G → SG формулой
f (a) := fa.
• Проверим, что f — гомоморфизм групп: пусть a, b ∈ G .
Тогда
∀x ∈ G имеем
fab(x) = abx = a(bx) = fa(fb(x)) = (fafb)(x).

• Следовательно, ∀a, b ∈ G f (ab) = f (a)f (b) и f —
гомоморфизм.
• Пусть a ∈ ker(f ). Тогда fa = f (a) = id, то есть,
∀x ∈ G ax = fa(x) = x , откуда очевидно следует, что
a = e.
• Таким образом, ker(f ) = {e}.
• По теореме о гомоморфизме групп (Теореме 5) мы
имеем
G ≃ G/{e} = G/ ker(f ) ≃ Im(f ) < SG . □
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Центр группы

Определение
Центр группы G — это множество всех элементов группы,
которые коммутируют со всеми элементами G :
Z (G ) := {a ∈ G : ∀x ∈ G ax = xa}.

• Если G абелева, то Z (G ) = G .

Свойство 1
a ∈ Z (G ) ⇐⇒ Ia = id.

Доказательство. a ∈ Z (G ) ⇐⇒ ∀x ∈ G ax = xa ⇐⇒
∀x ∈ G x = a−1xa = Ia(x) ⇐⇒ Ia = id. □

Свойство 2
a ∈ Z (G ) ⇐⇒ ∀x ∈ G Ix(a) = a.

Доказательство. a ∈ Z (G ) ⇐⇒ ∀x ∈ G ax = xa ⇐⇒
∀x ∈ G Ix(a) = x−1ax = a. □
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Лемма 21
1) Z (G ) < G .
2) Если H < Z (G ), то H ◁ G .

Доказательство. 1) • Пусть a, b ∈ Z (G ), x ∈ G . Тогда
(ab)x = axb = x(ab), а значит, ab ∈ Z (G ).
• Пусть a ∈ Z (G ), x ∈ G . Тогда
a−1x = xa−1 ⇐⇒ a(a−1x)a = a(xa−1)a ⇐⇒ xa = ax .
Значит, a−1 ∈ Z (G ).
• По Лемме 1, Z (G ) < G .
2) • Пусть a ∈ H, x ∈ G . По Свойству 2 тогда
x−1ax = a ∈ H.
• По Лемме 15, H ◁ G . □
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Теорема 10
Для любой группы G выполнено G/Z (G ) ≃ Inn(G ).

Доказательство. • Определим f : G → Inn(G ) формулой
f (a) := Ia−1 .
• Так как для любого x ∈ G

Ia−1(Ib−1(x)) = a(bxb−1)a−1 = (ab)x(ab)−1 = I(ab)−1(x),
мы имеем f (a)f (b) = f (ab), то есть, f — гомоморфизм
групп.
• По Свойству 1 центра и так как Z (G ) < G ,
a ∈ Ker(f ) ⇐⇒ Ia−1 = id ⇐⇒ a−1 ∈ Z (G )

⇐⇒ a ∈ Z (G ).

• Таким образом, Ker(f ) = Z (G ).
• Очевидно, Im(f ) = Inn(G ).
• По теореме о гомоморфизме (Теореме 5)
G/Z (G ) = G/ ker(f ) ≃ Im(f ) = Inn(G ). □
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Определение
Пусть p ∈ P. Конечная группа G с |G | = pn, где n ∈ N
называется p-группой.

Теорема 11
Пусть p ∈ P, а G — p-группа. Тогда |Z (G )| ... p.

Доказательство. • Рассмотрим действие Inn(G ) на G .
• По Теореме 10 мы имеем Inn(G ) ≃ G/Z (G ), откуда следует,
что
|Inn(G )| = |G/Z (G )| = (G : Z (G )) = |G |

|Z(G)| .

• Значит, |Inn(G )| = pk , где k ≤ n.
• По Свойству 4 орбит G разбивается на орбиты под
действием Inn(G ).
• По Теореме 8, |Inn(G )| = pk делится на размеры всех этих
орбит. Следовательно, размер каждой орбиты либо равен 1,
либо делится на p.
• По Свойству 2 центра одноэлементные орбиты под
действием Inn(G ) образуют в точности элементы из Z (G ).
• Так как |G | ... p, количество одноэлементных орбит делится
на p. Следовательно, |Z (G )| ... p. □
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Лемма 22
Пусть p ∈ P, а H — абелева группа конечного порядка,
|H| ... p. Тогда H имеет элемент порядка p.

Доказательство. • Индукция по |H|.
• База |H| = p: по теореме Лагранжа (Теореме 1) в
группе H могут быть только элемент порядка 1 (это e) и
p. Значит, элемент порядка p есть.
Переход. Пусть для групп меньших порядков лемма
доказана.
• Пусть a ∈ H. Рассмотрим два случая.
Случай 1: ord(a)

... p.
• Пусть ord(a) = np. Тогда ord(an) = p.
Случай 2: ord(a) /

... p.
• Пусть F = ⟨a⟩. Тогда |F | = k , (k , p) = 1.
• Очевидно, F ◁ H (любая подгруппа абелевой группы
нормальна).
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• Рассмотрим группу H/F . Тогда
|H/F | = (H : F ) = |H|

k

... p.
• По индукционному предположению существует элемент
b ∈ H/F с ord(b) = p.
• Рассмотрим b ∈ H. Мы знаем, что bp ∈ F и bs /∈ F при
s < p.
• Пусть ord(b) = m = qp + r , где 0 ≤ r < p.
• Тогда F ∋ e = bqp+r = (bp)q · br , откуда следует, что
br ∈ F , а значит, r = 0 и m

... p.
• Итак, ord(b)

... p и по Случаю 1 в H есть элемент
порядка p. □
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Первая теорема Силова

Определение
Пусть G — конечная группа, H < G , p ∈ P, pk ∥ |G |. Тогда H
— силовская p-подгруппа G , если |H| = pk .

Теорема 12
Пусть G — конечная группа, p ∈ P, pk ∥ |G |. Тогда G имеет
подгруппу порядка pk .

Доказательство. • Индукция по |G |. База для |G | /... p очевидна.
Переход. Пусть для групп меньших порядков теорема
доказана, а |G | = npk , где k ≥ 1 и n /

... p.
• Рассмотрим два случая.
Случай 1: |Z (G )| ... p.
• По Лемме 22, существует a ∈ Z (G ) с ord(a) = p.
• Тогда |⟨a⟩| = p по Следствию 1.
• По Лемме 21, ⟨a⟩◁ G . Рассмотрим G ′ := G/⟨a⟩, тогда
|G ′| = (G : ⟨a⟩) = npk−1 и по индукционному предположению
существует подгруппа H ′ < G ′ с |H ′| = pk−1.
• Пусть H = {x ∈ G : x ∈ H ′}. По Лемме 20, H < G и
|H| = |H ′||⟨a⟩| = pk , что нам и нужно.
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• Тогда рассмотрим действие G на G сопряжениями: для
любых g ∈ G и x ∈ G положим (g , x) → gxg−1 = Ig−1(x).

• Нетрудно проверить, что это действие. Множество G
разбивается этим действием на орбиты.
• Очевидно, орбиты каждого элемент x ∈ Z (G )
одноэлементная. Объединение всех таких орбит равно Z (G ) и
имеет некратное p число элементов.
• Так как |G | ... p, существует такой элемент a ∈ G \ Z (G ), что
|⟨a⟩| /... p (здесь ⟨a⟩ — орбита элемента a).
• Вспомним, что St(a) < G и по Теореме 8 мы знаем, что
|St(a)| · |⟨a⟩| = |G |.
• Тогда pk ∥ |St(a)|. Из a /∈ Z (G ) следует, что |⟨a⟩| > 1, а
значит, |St(a)| < |G |.
• По индукционному предположению, существует такая
H < St(a), что |H| = pk . Тогда H < G и теорема доказана. □
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Следствие 3
(Теорема Коши.) Пусть G — конечная группа, p ∈ P,
|G | ... p. Тогда существует такой a ∈ G , что ord(a) = p.

Доказательство. • Пусть pk ∥ |G |. По Теореме 12,
существует H < G , |H| = pk . По Теореме 11 мы имеем
|Z (H)| ... p.
• Так как Z (H) — абелева группа, по Лемме 22
существует a ∈ Z (H), ord(a) = p. □
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Вторая теорема Силова

Теорема 13
Пусть G — конечная группа, p ∈ P, |G | ... p. Тогда выполнены
следующие утверждения.
1) Если P < G — силовская p-подгруппа, то все силовские
p-подгруппы G — это в точности все подгруппы вида Ia(P),
где a ∈ G .
2) Любая p-подгруппа группы G является подгруппой одной
из силовских p-подгрупп.

Доказательство. • По Следствию 2, все множества вида Ia(P)
— подгруппы G .
• Так как Ia — биекция, все они имеют |P| элементов, то есть,
являются силовсими p-подгруппами.
• Пусть H < G — p-подгруппа (не обязательно силовская).
Достаточно доказать, что ∃a ∈ G , для которого H < Ia(P)
(если H — силовская, то мы получим как раз H = Ia(P)).
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• H действует левыми сдвигами на множестве левых смежных
классов M = {aP : a ∈ G} (это не обязательно
фактор-группа!):

для x ∈ H, aP ∈ M положим x · aP := (xa)P

(условия из определения действия проверяются очевидно).
• Множество M разбивается на орбиты, размеры которых по
Теореме 8 делят |H| = ps , а значит, длина каждой орбиты
либо делится на p, либо равна 1.

• Так как |M| = |G |
|P| /

... p, есть одноэлементная орбита {aP}.

• Таким образом, ∀x ∈ H xaP = aP ⇒ x · aPa−1 = aPa−1.
• Так как aPa−1 < G , это означает, что x ∈ aPa−1.
• Таким образом, H ⊂ aPa−1 ⇒ H < aPa−1, что мы и
доказывали. □


