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Показатель, к которому принадлежит вычет

Определение
Пусть p ∈ P, a ∈ Zp, a ̸= 0, d ∈ N. Вычет a принадлежит
к показателю d , если ad = 1, но as ̸= 1 при s ∈ N, s < d .
Обозначение: a ∈p d .

Лемма 1
Пусть p ∈ P, a ∈ Zp. Тогда выполнены следующие
утверждения.
1) Если ad = 1 и a ∈p s, то s | d .
2) Если a ∈p d , то d | p − 1.

Доказательство. 1) • Предположим противное и поделим
d на s с остатком: d = sq + r , 0 < r < s.
• Тогда 1 = ad = asq+r = (as)q · ar = ar ,
что противоречит минимальности s.

2) По теореме Эйлера ap−1 = 1. Тогда по пункту 1 имеем
d | p − 1. □



Алгебра. Глава
4. Многочлены
и теория чисел.

Д. В. КарповЛемма 2
Если p ∈ P и d | p − 1, то многочлен td − 1 ∈ Zp[t] имеет
ровно d корней, все они не 0.

Доказательство. • Многочлен tp−1 − 1 имеет в Zp[t]
ровно p − 1 корень (по теореме Эйлера, все ненулевые
вычеты его корни).
• Пусть p − 1 = qd . Тогда
tp−1 − 1 = (td − 1)(t(q−1)d + · · ·+ td + 1) =: (td − 1)f (t).
• Так как deg(f ) = (q − 1)d , этот многочлен по Теореме
3.7 имеет не более (q − 1)d корней.
• Если td − 1 имеет менее d корней, то
tp−1 − 1 = (td − 1)f (t) имеет менее d + (q − 1)d = p − 1
корней, противоречие. □
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Теорема 1
Если p ∈ P и d | p − 1, то к показателю d принадлежит ровно
φ(d) вычетов.

Доказательство. • Индукция по d . База d = 1 очевидна:
a ∈p 1 ⇐⇒ a = 1.
• Все вычеты, принадлежащие к показателю d , являются
корнями многочлена td − 1.
• Если s | d (скажем, d = qs) и b ∈p s, то bd = (bs)q = 1, то
есть, b — корень td − 1.
• Так как каждый ненулевой вычет принадлежит в точности
одному показателю, вычеты, принадлежащие собственным
делителям d дают нам∑
s | d, s<d

φ(s) =

(∑
s | d

φ(s)

)
− φ(d) = d − φ(d) различных

корней многочлена td − 1 (последнее равенство верно по
Теореме 2.17).
• Оставшиеся d − (d − φ(d)) = φ(d) корней многочлена td − 1
принадлежат к d (по Лемме 1 они должны принадлежать к
делителю d , а этим делителем может быть только само d). □
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Первообразный корень по модулю p

Определение
Пусть p ∈ P. Вычет a ∈ Zp — первообразный корень по
модулю p, если a ∈p p − 1.

• По Теореме 1 существует в точности φ(p − 1) первообразных
корней по модулю p.

Теорема 2
Пусть p ∈ P, a — первообразный корень по модулю p. Тогда a,
a2, . . . , ap−1 = 1 — ПрСВ (mod p), то есть, в точности все
ненулевые вычеты из Zp.

Доказательство. • Достаточно доказать, что ai ̸= aj при
1 ≤ j < i ≤ p − 1.
• Предположим противное, пусть ai = aj ⇐⇒ aj(ai−j − 1) = 0.
• Однако, aj ̸= 0 и ai−j ̸= 1, так как 0 < i − j < p − 1.
Противоречие. □

• Если a — первообразный корень по модулю p, то любой
ненулевой вычет b ∈ Zp представляется в виде b = ak , где
1 ≤ k ≤ p − 1.
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Квадратичные вычеты и невычеты в Zp

Определение
Пусть p ∈ P, a ∈ Zp, a ̸= 0.
• Тогда a — квадратичный вычет, если существует такой
b ∈ Zp, что b2 = a.
• Если такого b не существует, то a — квадратичный
невычет.

• Далее в этом разделе p — нечетное простое число.
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Лемма 3
Пусть p ∈ P нечетно, p1 := p−1

2 . Тогда:
1) квадратичные вычеты в Zp — корни многочлена
tp1 − 1;
2) если x2 = y2, то x = y или x = −y ;
3) существует в точности p−1

2 квадратичных вычетов в
Zp.

Доказательство. 1) • Если a — квадратичный вычет, то
a = b2 в Zp.
• По Теореме Эйлера ap1 − 1 = b2p1 − 1 = bp−1 − 1 = 0.
2)
x2 = y2 ⇐⇒ (x+y)(x−y) = 0 ⇐⇒ x = y или x = −y .
3) Из пункта 2 следует, что ненулевые вычеты из Zp

разбиваются на p−1
2 пар вида {x ,−x}, дающих

одинаковый квадрат. Значит, существует ровно p−1
2

квадратичных вычетов по модулю p. □
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Лемма 4
Пусть p ∈ P нечетно, p1 := p−1

2 . Тогда выполнены
следующие утверждения.
1) Квадратичные невычеты в Zp — корни многочлена
tp1 + 1.
2) Существует в точности p−1

2 квадратичных невычетов в
Zp.

Доказательство. • По Теореме Эйлера многочлен
tp−1 − 1 = (tp1 − 1)(tp1 + 1) имеет в Zp ровно p − 1
корень — все ненулевые вычеты.
• Многочлен tp1 − 1 имеет ровно p1 корней, как мы знаем
из Леммы 2. По Лемме 3 все эти корни — квадратичные
вычеты.
• Все p1 ненулевых вычетов, не являющиеся корнями
tp1 − 1, являются корнями многочлена tp1 + 1.
• Значит, и многочлен tp1 + 1 имеет ровно p1 корней — в
точности все квадратичные невычеты. □
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Лемма 5
Пусть p ∈ P нечетно, a, b ∈ Zp, a ̸= 0, b ̸= 0. Тогда:
1) Если a, b — квадратичные вычеты, то ab — квадратичный
вычет.
2) Если a — квадратичный вычет, а b — квадратичный
невычет, то ab — квадратичный невычет.
3) Если a, b — квадратичные невычеты, то ab — квадратичный
вычет.

Доказательство. 1) Существуют такие x , y ∈ Zp, что a = x2 и
b = y2. Тогда ab = (xy)2.
2) • Вычеты a, 2a, . . . , (p − 1)a — это в точности все ненулевые
элементы Zp: среди них нет 0 и все они различны, так как
ai = aj ⇒ i = j (равенство можно домножить на a−1.)
• Значит, среди a, 2a, . . . , (p − 1)a ровно по p−1

2 квадратичных
вычетов и квадратичных невычетов.
• Так как при умножении a на квадратичные вычеты (на все
p−1

2 штук) по пункту 1 получаются различные квадратичные
вычеты (все p−1

2 штук), то при умножении a на квадратичные
невычеты получаются квадратичные невычеты.
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3) • И на этот раз a, 2a, . . . a(p − 1) — это в точности все
ненулевые элементы Zp, среди них ровно по p−1

2
квадратичных вычетов и квадратичных невычетов.
• Так как при умножении a на квадратичные вычеты (на
все p−1

2 штук) по пункту 2 получаются различные
квадратичные невычеты (все p−1

2 штук), то при
умножении a на квадратичные невычеты получаются
квадратичные вычеты. □
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Решение квадратных уравнений в Zp

• Пусть p ∈ P, p ̸= 2, a, b, c ∈ Zp, a ̸= 0, D = b2 − 4ac .

ax2 + bx + c = 0 ⇐⇒ x2 +
b

a
x +

c

a
= 0 ⇐⇒(

x+
b

2a
)2

=
b2

4a2 −
c

a
=

b2 − 4ac
4a2 ⇐⇒

(
x+

b

2a
)2

=
D

4a2 .

• Если D — квадратичный вычет, то D = d2 для
некоторого d ∈ Zp и D

4a2 =
(±d

2a

)2. Тогда уравнение имеет
два решения:

x1 = −b+d
2a и x2 = −b−d

2a .
• Если D = 0, то уравнение имеет одно решение:

x1 = −b
2a .

• Если D — квадратичный невычет, то D
4a2 — также

квадратичный невычет, а значит, решений нет (так как
квадратичный невычет не может быть равен квадрату).
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Квадратичные вычеты по модулю p. Символ
Лежандра

Определение
Пусть p ∈ P, a ∈ Z, a /

... p.
• Тогда a — квадратичный вычет по модулю p, если
вычет a в Zp — квадратичный вычет.
• Аналогично, a — квадратичный невычет по модулю p,
если вычет a в Zp — квадратичный невычет.

Определение
Пусть p ∈ P, a ∈ Z. Тогда символ Лежандра

(
a

p

)
=


1, если a — квадратичный вычет по модулю p;
−1, если a — квадратичный невычет по модулю p;
0, если a

... p.
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Свойство 1(
a
p

)
≡ a

p−1
2 (mod p).

Доказательство. • a — квадратичный вычет по модулю p

⇐⇒ a — квадратичный вычет в Zp ⇐⇒ (a)
p−1
2 = 1.

• a — квадратичный невычет по модулю p ⇐⇒
a — квадратичный невычет в Zp ⇐⇒ (a)

p−1
2 = −1.

• a = 0 ⇐⇒ a
p−1
2 = 0. □

Свойство 2
(Первое дополнение к закону взаимности Гаусса.)(−1

p

)
≡ (−1)

p−1
2 (mod p).

Свойство 3(
ab
p

)
= ( ap

)
· ( bp

)
.

Доказательство. • Следует из Леммы 5 и определения
символа Лежандра. □
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Пусть p ∈ P, p1 = p−1

2 , a ∈ Z, a /
... p. Тогда(

a
p

)
= (−1)

p1∑
x=1

[ 2ax
p

]
.

Доказательство. • Пусть M = {1, 2, . . . , p1}.

Утверждение 1
Для каждого j ∈ M существует sj ∈ {0, 1} и rj ∈ M такие,
что ja ≡ (−1)sj rj (mod p).

Доказательство. • Пусть r ′j — остаток от деления ja на p.
• Если r ′j ∈ M, то положим rj := r ′j , sj = 0.
• Если r ′j /∈ M, то r ′j ∈ {p1 + 1, . . . , p − 1}, тогда
p − r ′j ∈ {1, . . . , p − 1 − p1 = p1} = M.
• В этом случае положим rj = p − r ′j , sj = 1. □
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Утверждение 2
Если i , j ∈ M, i ̸= j , то ri ̸= rj .

Доказательство. • Предположим противное, пусть ri = rj .
• Если si = sj , то r ′i = r ′j .
• Следовательно, ia ≡p ja ⇐⇒ a(i − j)

... p ⇒ i − j
... p,

что не так (последний переход верен, так как (a, p) = 1).
• Если si ̸= sj , то r ′i = p − r ′j .
• Следовательно, ia ≡p −ja ⇐⇒ a(i + j)

... p ⇒ i + j
... p,

что не так: 2 ≤ i + j ≤ 2p1 = p − 1. □
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Утверждение 3
sj = 1 ⇐⇒ [2ajp ] /

... 2.

Доказательство. • Напомним, что
aj = pq + r ′j ⇐⇒ 2aj = 2pq + 2r ′j , где r ′j ∈ {1, . . . , p − 1}.

sj = 1 ⇐⇒ p + 1
2

= p1 + 1 ≤ r ′j ≤ p − 1 ⇐⇒

p+1 ≤ 2r ′j ≤ 2p−2 ⇐⇒ p+1+2pq ≤ 2aj ≤ 2p−2+2pq ⇐⇒
p + 2pq < 2aj < 2p + 2pq ⇐⇒

2q + 1 <
2aj
p

< 2q + 2 ⇐⇒
[
2aj
p

]
= 2q + 1 /

... 2.

• Пояснение 1. Так как разность целых чисел не менее 1,
p + 1 + 2pq ≤ 2aj ⇐⇒ p + 2pq < 2aj .
• Пояснение 2. Так как разность четных чисел не менее 2,
2aj ≤ 2p − 2 + 2pq ⇐⇒ 2aj < 2p + 2pq. □
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• Вернемся к доказательству Леммы 6. По
Утверждению 2, {r1, . . . , rp1} = M (так как все эти числа
из M и различны, а |M| = p1).
• Пусть R = 1 · 2 · · · · · p1. Тогда r1r2 · · · · · rp1 = R .
• Напишем цепочку сравнений:

(−1)

p1∑
x=1

sx
R ≡ (−1)

p1∑
x=1

sx
·

p1∏
x=1

rx ≡

p1∏
x=1

(−1)sx rx ≡
p1∏
x=1

ax (mod p) ≡ ap1R (mod p) (1).

• Сокращая (1) на R (можно, так как (R, p) = 1),

получаем ap1 ≡ (−1)

p1∑
x=1

sx
≡ (−1)

p1∑
x=1

[ 2ax
p

]
(mod p)

(последний переход верен по Утверждению 3). □
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Лемма 7
Пусть p ∈ P, p1 = p−1

2 .
1) (Второе дополнение к закону взаимности Гаусса.)( 2
p

)
= (−1)

p2−1
8 .

2) Пусть a ∈ Z, a /
... p и a /

... 2. Тогда
(
a
p

)
= (−1)

p1∑
x=1

[ axp ]
.

Доказательство. 1) • Тогда p+a
2 ∈ Z, применим Лемму 6:

(
a

p

)
=

(
p + a

p

)
=

(
2 p+a

2
p

)
=

(
2
p

)( p+a
2
p

)
=(

2
p

)
· (−1)

p1∑
x=1

[ 2x p+a
2

p

]
=

(
2
p

)
· (−1)

p1∑
x=1

(
x+[ axp ]

)
=(

2
p

)
·(−1)

p1∑
x=1

x
·(−1)

p1∑
x=1

[ axp ]
=

(
2
p

)
·(−1)

p2−1
8 ·(−1)

p1∑
x=1

[ axp ]
. (1)

• Подставим a = 1 в (1) и учтем, что при 1 ≤ x ≤ p1
выполнено [ xp ] = 0:

1 =
( 1
p

)
=

( 2
p

)
· (−1)

p2−1
8 , откуда следует, что

( 2
p

)
= (−1)

p2−1
8 .
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2) Теперь (1) можно продолжить так:

(
a

p

)
=

(
2
p

)
· (−1)

p2−1
8 · (−1)

p1∑
x=1

[ ax
p
]
=

(
(−1)

p2−1
8

)2

· (−1)

p1∑
x=1

[ ax
p
]
= (−1)

p1∑
x=1

[ ax
p
]
. □

Теорема 3
(Закон взаимности Гаусса.)
Пусть p, q ∈ P нечетны. Тогда

(q
p

)
·
(p
q

)
= (−1)

p−1
2 · q−1

2 .

Доказательство. • Пусть p1 := p−1
2 и q1 := q−1

2 .

• По Лемме 7,
(q
p

)
·
(p
q

)
= (−1)

p1∑
x=1

[ qx
p
]+

q1∑
y=1

[ py
q
]

.

• Нам нужно доказать, что
p1∑
x=1

[qxp ] +
q1∑
y=1

[pyq ] = p1q1.
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• Рассмотрим клетчатую решетку, проведем на ней прямую ℓ,
заданную уравнением y = q

p x .

• Так как (p, q) = 1, при x ≤ p1 на этой прямой нет узлов —
точек с целыми координатами. Аналогично, при y ≤ q1 на это
прямой нет узлов. (Ближайший к началу координат узел в 1
четверти на ℓ — это точка с координатами x = p, y = q.)
• На вертикалях с абсциссами x ∈ {1, 2, . . . , p1} отметим все
узлы с положительными ординатами, лежащие под прямой ℓ
(белые квадратики на рисунке). На вертикали с абсциссой x
отмечено в точности [ qxp ] узлов.

• На горизонталях с ординатами y ∈ {1, 2, . . . , q1} отметим
все узлы с положительными абсциссами, лежащие над прямой
ℓ (черные квадратики на рисунке). На вертикали с ординатой
y отмечено в точности [ pyq ] узлов.

b b b b b b b

b

b

b

b

b

1

1

p1

q1 y = q
px

rs

rs

rs

rs

rs

r

r

r

r

rrrrr

r r r

r r

r

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

x

y
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p1∑
x=1

[ qxp ] +
q1∑
y=1

[ pyq ] узлов.

• Так как прямая ℓ не проходит через узлы с
рассматриваемыми абсциссами и ординатами, каждый узел с
абсциссой от 1 до p1 и с ординатой от 1 до q1 отмечен ровно
один раз (он либо над ℓ, либо под ℓ).
• Значит, отмечено ровно p1q1 узлов. □

b b b b b b b

b

b

b

b

b

1

1

p1

q1 y = q
px

rs

rs

rs

rs

rs

r

r

r

r

rrrrr

r r r

r r

r

rs

rs

rs

rs

rs

rs

rsrs

rs

rs

x
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Кольцо многочленов Z[t]. Содержание многочлена.

Определение
Пусть f (t) = ant

n + · · ·+ a0 ∈ Z[t]. Тогда его содержание
c(f ) = (a0, . . . , an) (НОД коэффициентов).

Лемма 8
(Лемма Гаусса.) Пусть f , g ∈ Z[x ], c(f ) = c(g) = 1. Тогда
c(fg) = 1.

Доказательство. • Предположим противное и рассмотрим
такое p ∈ P, что c(fg)

... p. Однако, c(f ) /
... p и c(g) /

... p.
• Пусть f (t) = ant

n + · · ·+ a0 и g(t) = bmt
m + · · ·+ b0.

Рассмотрим такой наименьший индекс k , что ak /
... p и такой

наименьший индекс ℓ, что bℓ /
... p.

• Пусть fg = dm+nt
n+m + · · ·+ d0. Тогда

dk+ℓ =

(
k−1∑
i=0

aibk+ℓ−i

)
+ akbℓ +

(
k+ℓ∑

i=k+1
aibk+ℓ−i

)
/
... p,

так как первая сумма делится на p
(ai

... p при i ∈ {0, . . . , k − 1}) и вторая сумма делится на p
(при i ∈ {k + 1, . . . , k + ℓ} мы имеем k + ℓ− i ∈ {0, . . . , ℓ− 1},
а значит, bk+ℓ−i

... p), а akbℓ /
... p.

• Значит, c(fg) /
... p, противоречие. □



Алгебра. Глава
4. Многочлены
и теория чисел.

Д. В. Карпов

Следствие 1
Для f , g ∈ Z[x ] выполнено c(fg) = c(f )c(g).

Доказательство. • Пусть f (t) = c(f ) · f1(t) и g(t) = c(g) · g1(t).
• Тогда f1, g1 ∈ Z[t] и c(f1) = c(g1) = 1 и по Лемме Гаусса
c(f1g1) = 1.
• Следовательно,
c(fg) = c(c(f ) · f1 · c(g) · g1) = c(f )c(g) · c(f1g1) = c(f )c(g)
(мы воспользовались тем, что общий множитель c(f )c(g) при
вычислении НОД коэффициентов можно вынести). □

Лемма 9
Пусть f ∈ Z[x ], q1, . . . , qn ∈ Q[x ], f = q1 . . . qn, deg(qi ) ≥ 1 для
всех i ∈ {1, . . . , n}. Тогда существуют такие p1, . . . , pn ∈ Z[x ] и
c1, . . . , cn ∈ Q, что f = p1 . . . pn
и pi = ciqi для всех i ∈ {1, . . . , n}.

Доказательство. • Для каждого i ∈ {1, . . . , n} представим все
коэффициенты qi в виде несократимых дробей, пусть mi —
НОК знаменателей этих коэффициентов.
• Тогда gi = miqi ∈ Z[x ] и mf = g1 . . . gn, где
m = m1 . . .mn ∈ N.
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Утверждение
Пусть mf = g1 . . . gn, где m ∈ N, f , g1, . . . , gn ∈ Z[x ]. Тогда
существует разложение f = p1 . . . pn, где pi = digi ∈ Z[x ],
di ∈ Q для всех i ∈ {1, . . . , n}.

Доказательство. Индукция по m.
База m = 1: построенное разложение f = g1 . . . gn подходит.
Переход. • Пусть для меньших m утверждение доказано,
p ∈ P, m

... p.
• Тогда c(g1) . . . c(gn) = c(g1 . . . gn) = c(m · f ) ... p, значит,
существует такое i ∈ {1, . . . , n}, что c(gi )

... p.
• НУО c(g1)

... p. Тогда g1 = p · g∗
1 , где g∗

1 ∈ Z[x ].
• Пусть m∗ := m

p . Тогда m∗ ∈ Z и m∗f = g∗
1 g2 . . . gn.

• Так как m∗ < m, по индукционному предположению
существует разложение f = p1 . . . pn, где p1 = d∗

1 g
∗
1 и pi = digi

при i ∈ {2, . . . , n}.
• Положим d1 :=

d∗
1
p . Тогда p1 = d1g1, получено разложение

для m. □

• Для завершения доказательства леммы остается положить
ci := dimi . □
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Связь неприводимости в Q[x ] и в Z[x ]

• Если многочлен f ∈ Z[x ] неприводим в Q[x ], то он,
очевидно, неприводим и в Z[x ].

Следствие 2
Многочлен f ∈ Z[x ] неприводим в Q[x ], если и только
если он неприводим в Z[x ].

Доказательство. ⇒. Если многочлен f ∈ Z[x ] приводим в
Z[x ], то он, очевидно, приводим и в Q[x ].
⇐. • Предположим противное, пусть f приводим в Q[x ].
• Тогда f = g1g2, где g1, g2 ∈ Q[x ], 1 ≤ deg(g1) < deg(f )
и 1 ≤ deg(g2) < deg(f ).
• По Лемме 9, существует разложение f = h1h2, где
h1, h2 ∈ Z[x ], h1 = cg1 и h2 = c ′g2, c , c ′ ∈ Q.
• Тогда f приводим в Z[x ], противоречие. □
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Основная теорема арифметики в Z[t]

Определение
Многочлен f ∈ Z[t] — тривиальный, если c(f ) = 1.

Теорема 4
Любой многочлен f ∈ Z[x ] с положительным старшим
коэффициентом раскладывается в произведение
f = r1 . . . rk · p1 . . . , pn, где r1, . . . , rk ∈ P, а
p1, . . . , pn ∈ Z[x ] — тривиальные неприводимые
многочлены с положительными старшими
коэффициентами. Разложение единственно с точностью
до перестановки сомножителей.

• Разумеется, многочлен f ∈ Z[x ] с отрицательным
старшим коэффициентом раскладывается в аналогичное
произведение f = −r1 . . . rk · p1 . . . , pn.
Доказательство. ∃ • Пусть f = c(f ) · g , тогда g ∈ Z[x ] и
c(g) = 1. По ОТА в Z существует разложение на простые
множители c(f ) = r1 . . . rk .
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• Пусть a — старший коэффициент g . Тогда a > 0.
• По ОТА в Q[x ] существует разложение g = aq′1q2 . . . qn, где
q′1, q2, . . . , qn — неприводимые в Q[x ] многочлены.
• Положим q1 := aq′1, тогда q1 также неприводим в Q[x ].
• Итак, g = q1q2 . . . qn.
• По Лемме 9 существует разложение g = p1 . . . pn, где
pi ∈ Z[x ] и pi = ciqi , ci ∈ Q.
• Можно считать, что старший коэффициент каждого pi
положителен: иначе заменим pi на −pi и ci на −ci .
• Так как pi ∼ qi в Q[x ], многочлены p1, . . . , pn неприводимы в
Q[x ], а значит, и в Z[x ].
• Тогда f = r1 . . . rk · p1 . . . pn.
• По Следствию 1 имеем c(f ) = c(r1 . . . rk · p1 . . . pn) =
r1 . . . rk · c(p1) . . . c(pn) = c(f ) · c(p1) . . . c(pn),
откуда c(p1) = . . . c(pn) = 1.
• Значит, f = r1 . . . rk · p1 . . . pn.— искомое разложение.
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f = r1 . . . rkp1 . . . pn = s1 . . . sℓq1 . . . qm, (1)
где r1, . . . , rk , s1, . . . , sℓ ∈ P и p1 . . . pn, q1 . . . qm ∈ Z[x ] —
неприводимые тривиальные многочлены с положительными
старшими коэффициентами.
• По Лемме 8, тогда c(p1 . . . pn) = c(p1) . . . c(pn) = 1, откуда
c(f ) = r1 . . . rk — разложение на простые множители.
Аналогично, c(f ) = s1 . . . sℓ — разложение на простые
множители.
• По ОТА в Z, эти разложения могут отличаться только
порядком множителей, что нам и надо.
• Пусть g := 1

c(f ) f ∈ Z[x ], тогда g = p1 . . . pn = q1 . . . qm — два
разложения g в произведение неприводимых в Z[x ]
тривиальных многочленов.
• По Следствию 2 это два разложения g в произведение
неприводимых многочленов в Q[x ].
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• Пусть p∗i — многочлен, полученный из pi делением на
старший коэффициент (для всех i ∈ {1, . . . , n}), а q∗j —
многочлен, полученный из qj делением на старший
коэффициент (для всех j ∈ {1, . . . ,m}), а a — старший
коэффициент f .
• Тогда g = ap∗1 . . . p

∗
n = aq∗1 . . . q

∗
m — два разложения g в Q[x ]

в произведение неприводимых многочленов со старшим
коэффициентом 1, а по ОТА в Q[x ] (Теорема 3.5) такие
разложения могут отличаться лишь порядком сомножителей.
• Значит, m = n и можно считать, что p∗i = q∗i для всех i .
• Тогда существует такое ci ∈ Q, что pi = ciqi . Тогда ci > 0
(так как ci равно отношению положительных старших
коэффициентов pi и qi ).
• Нам остается доказать, что c1 = · · · = cn = 1. Пусть это не
так. Из (1) ясно, что c1c2 . . . cn = 1. Значит, НУО c1 > 1.
• Пусть c1 = a1

b1
— представление в виде несократимой дроби.

Тогда (a1, b1) = 1, a1 > 1.
• Пусть q1(t) = dw t

w + · · ·+ d0, тогда
p1(t) =

a1dw
b1

tw + · · ·+ a1d0
b1

.
• Так как (a1, b1) = 1, для всех i ∈ {1, . . . ,w} мы имеем
a1di
b1

... a1. Значит, 1 = c(p1)
... a1, противоречие. □
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Критерий Эйзенштейна

Теорема 5
Пусть f (t) = ant

n + · · ·+ a1t + a0 ∈ Z[t] и p ∈ P таковы, что
an /

... p, an−1, . . . , a0
... p и a0 /

... p2. Тогда f — неприводим в Z[t].
Доказательство. • Предположим противное. Пусть f = gh, где
deg(g) > 0 и deg(h) > 0.
• Пусть g(t) = bmt

m + · · ·+ b0, h(t) = ckt
k + · · ·+ c0 (тогда

m + k = n).
• Так как c0b0 = a0

... p и c0b0 /
... p2, НУО b0

... p и c0 /
... p.

• Так как bmck = an /
... p, мы имеем bm /

... p. Следовательно,
можно выбрать наименьший такой индекс ℓ, что bℓ /

... p.

• Тогда aℓ = bℓc0 +
ℓ−1∑
i=0

bicℓ−i /
... p, так как bℓc0 /

... p, а для всех

i ∈ {0, . . . , ℓ− 1} bi
... p.

• Значит, aℓ /
... p. Но ℓ ≤ m < n, противоречие. □

Следствие 3
Пусть f (t) = ant

n + · · ·+ a1t + a0 ∈ Z[t] и p ∈ P таковы, что
a0 /

... p, a1, . . . , an
... p и an /

... p2. Тогда f — неприводим в Z[t].
• Доказательство аналогично Теореме 5.
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Значения в целых точках многочлена из Z[t]

Лемма 10
Пусть f (t) = ant

n + · · ·+ a0 ∈ Z[t], x , y ∈ Z, x ̸= y . Тогда
f (x)− f (y)

... x − y .

Доказательство. • НУО x − y > 0. Так как x ≡x−y y , для
всех k ∈ {0, . . . , n} выполняется xk ≡x−y yk .

• Тогда f (x) =
n∑

k=0
akx

k ≡x−y

n∑
k=0

aky
k = f (y). □
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Рациональные корни многочлена из Z[t]

Лемма 11
Пусть f (t) = ant

n + · · ·+ a0 ∈ Z[t], f ( pq ) = 0, где p, q ∈ Z,
(p, q) = 1. Тогда an

... q и a0
... p.

Доказательство.
0 = qnf ( pq ) = anp

n + an−1p
n−1q + · · ·+ a1pq

n−1 + a0q
n. (1)

• Все слагаемые в правой части (1), кроме anp
n, делятся на q,

значит, и anp
n ... q. Так как (p, q) = 1, получаем an

... q.
• Все слагаемые в правой части (1), кроме a0q

n, делятся на p,
значит, и a0q

n ... p. Так как (p, q) = 1, получаем a0
... p. □

Следствие 4
Пусть f (t) = tn + · · ·+ a0 ∈ Z[t], α ∈ Q, f (α) = 0. Тогда α ∈ Z.

Доказательство. • Пусть α = p
q , где p, q ∈ Z, (p, q) = 1.

• По Лемме 11, 1
... q, то есть α ∈ Z. □
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Пусть f (t) = ant

n + · · ·+ a0 ∈ Z[t], f ( pq ) = 0, где p, q ∈ Z,
(p, q) = 1. Тогда f (k)

... kq − p для любого k ∈ Z.

Доказательство. •

qnf (k) = qn
(
f (k)− f

(p
q

))
=( n∑

i=0

qnaik
i

)
−
( n∑

i=0

aip
iqn−i

)
=

n∑
i=1

qn−iai
(
(kq)i−pi

) ... kq−p,

так для всех i ∈ {1, . . . , n}
(kq)i − pi

... kq − p ⇐⇒ (kq)i ≡kq−p pi ⇐ kq ≡kq−p p.

• Так как (qn, kq − p) = (q, p) = 1, из qnf (k)
... kq − p следует,

что f (k)
... kq − p.

□
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Разностный многочлен

Определение
Пусть f ∈ K [x ], где K — коммутативное кольцо с 1, причем
K ⊃ Z.
• Разностный многочлен задается формулой
∆f (x) := f (x + 1)− f (x).

• Примеры подходящих колец K : Z, Q, R, C.

Лемма 13
Пусть f ∈ K [x ], где K — коммутативное кольцо с 1, причем
K ⊃ Z. Тогда ∆f ∈ K [x ], deg(∆f ) = deg(f )− 1.

Доказательство. • Пусть f (x) = anx
n + · · ·+ a0, где n = deg(f ).

• По биному Ньютона, ak
(
(x + 1)k − xk

)
=

k∑
i=1

akCi
kx

k−i .

• Поэтому ∆f ∈ K [x ].
• Одночлены с xn в ∆f сокращаются, а единственный
одночлен с xn−1 — это anC1

nx
n−1 с коэффициентом anC1

n ̸= 0.
Следовательно, deg(∆f ) = n − 1. □


